

North American IPv6 Summit

Grand Hyatt, Denver, Colorado September 23-25, 2014

Rocky Mountain IPv6 Task Force

IPv6 Address Planning and Allocation Strategies

Tim Rooney timothy.rooney@bt.com

Topics

- Context of address planning
 - Planning process overview
 - Addressing impacts
- IPv6 address plan
 - Goals
 - Allocation techniques
 - Strategies and guidelines
- Additional resources

IPv6 deployment impacts

- Infrastructure routers, switches, printers
- Computing devices servers, end user devices
- Applications, databases
- Security policies and enforcement
- Network and change management
- IP address management

The IPv4 baseline

- Helps identify current IP capacity/needs
- Not necessarily useful for IPv6 address structure

Address plan impacts

- Router functions
 - Forward IP packets to next hop on the way toward the ultimate destination
 - Based on information in the IP header
 - Based on internal routing tables
 - Based on configured router policies
- Security functions
 - Allow/disallow packet traversal
 - Based on information in the IP header
 - Based on filtering policies

Goals of an address plan

- Provide IP addresses to end nodes in order to...
- Enable end nodes to communicate...
 - with other nodes across the organization (or not)
 - with Internet or partner nodes (or not)
- Enable end nodes to communicate via supported media
- Facilitate network management
- Facilitate security management

IPv6 allocation techniques

- Monotonic
 - Allocate subnet ID numerically

Global Routing Prefix (n bits)

Subnet ID (m bits)

Interface ID (128 – n – m bits)

- 0000*,* 0001*,* 0010*,* 0011*,* ...
- Sparse
 - Allocate subnet ID bit counting right to left
 - 0000, 1000, 0100, 1100, ….
- Best fit
 - Allocate smallest available block
 - Optimizes allocation efficiency
- Random
- Prefix delegation

IPv6 address allocation hierarchy

- Obtaining IPv6 space
 - RIR or ISP
 - Unique Local (ULA)
- Allocation layers
 - Common prefix (GRP)
 - Hierarchical rollup
- Node level
 - Address assignment policy
 - DNS resource records

Geographic allocation model

General block allocation guidelines

- Define IP addressing requirements
- Define your addressing hierarchy layers
 - Routing topology core/division/regional/access
 - Application-specific routing treatment based on IP
 - Network segmentation
 - Administrative delegation
 - Management controls based on IP
- Allocation strategies
 - Allocate on 4-bit (nibble) boundaries
 - Simplifies reverse DNS configuration to hex digit boundaries
 - Simplifies association by sight for hex digit meanings
 - Sparse allocation at upper layers
 - Best-fit or random at lower (subnet) layers

Tracking allocations

	Application				
		Data	VoIP	Wireless	Management
	HQ	2001:db8:f000::/40			
	Philadelphia	2001:db8:f100::/40			
_	DC1	2001:db8:f100::/48	2001:db8:f105::/48	2001:db8:f10a::/48	2001:db8:f10f::/48
d d	Branch 1	2001:db8:f101::/48	2001:db8:f106::/48	2001:db8:f10b::/48	2001:db8:f110::/48
β0 Γο	Branch 2	2001:db8:f102::/48	2001:db8:f107::/48	2001:db8:f10c::/48	2001:db8:f111::/48
Seography	DC2	2001:db8:f103::/48	2001:db8:f108::/48	2001:db8:f10d::/48	2001:db8:f112::/48
	Branch 3	2001:db8:f104::/48	2001:db8:f109::/48	2001:db8:f10e::/48	2001:db8:f113::/48
	Dublin	2001:db8:f200::/40			
	Tokyo	2001:db8:f300::/40			

Tracking allocations

	Application			
	Data	VoIP	Wireless	Management
HQ	2001:db8:f000::/40	2001:db8:f400::/40	2001:db8:f800::/40	2001:db8:fc00::/40

	Application			
	Data	VoIP	Wireless	Management
HQ	2001:db8:7000::/40	2001:db8:7400::/40	2001:db8:7800::/40	2001:db8:7c00::/40

		Application			
		Data	VoIP	Wireless	Management
	HQ	2001:db8:b000::/40	2001:db8:b400::/40	2001:db8:b800::/40	2001:db8:bc00::/40
	Philadelphia	2001:db8:b100::/40	2001:db8:b500::/40	2001:db8:b900::/40	2001:db8:bd00::/40
_	DC1	2001:db8:b100::/48	2001:db8:b500::/48	2001:db8:b900::/48	2001:db8:bd00::/48
, Hd	Branch 1	2001:db8:b101::/48	2001:db8:b501::/48	2001:db8:b901::/48	2001:db8:bd01::/48
Geography	Branch 2	2001:db8:b102::/48	2001:db8:b502::/48	2001:db8:b902::/48	2001:db8:bd02::/48
	DC2	2001:db8:b103::/48	2001:db8:b503::/48	2001:db8:b903::/48	2001:db8:bd03::/48
	Branch 3	2001:db8:b104::/48	2001:db8:b504::/48	2001:db8:b904::/48	2001:db8:bd04::/48
	Dublin	2001:db8:b200::/40	2001:db8:b600::/40	2001:db8:ba00::/40	2001:db8:be00::/40
	Tokyo	2001:db8:b300::/40	2001:db8:b700::/40	2001:db8:bb00::/40	2001:db8:bf00::/40

Production

Allocation example 1

2001:db8::/32

- By application
 - Data: 2001:db8:0000::/36
 - Voice: 2001:db8:8000::/36
 - Wireless: 2001:db8:4000::/36
 - Management: 2001:db8:c000::/36
- By region (core network)
 - Voice HQ: 2001:db8:8000::/40
 - Voice Philly: 2001:db8:8800::/40
 - Voice Dublin: 2001:db8:8400::/40
 - Voice Tokyo: 2001:db8:8c00::/40
- By business unit
 - Voice Tokyo Engineering:2001:db8:8c00::/48
 - Voice Tokyo Finance:2001:db8:8c01::/48

Policy impact:

- Application packet treatment
 - bits 33-36
 - Same router policy network wide per application
- Core network routers
 - Analyze first 40 bits
 - Core routing table ~2⁴ entries
- Each BU is allocated:
 - {apps} X {regions} blocks
- Security policies
 - Fewer entries if by app
 - More entries if by region, more by BU

Allocation example 2

2001:db8::/32

- By BU
 - Eng: 2001:db8:0000::/40
 - Finance: 2001:db8:8000::/40
 - Corp: 2001:db8:4000::/40
 - Sales: 2001:db8:c000::/40
- By app
 - Corp Data: 2001:db8:4000::/44
 - Corp Voice : 2001:db8:4080::/44
 - Corp Wireless: 2001:db8:4040::/44
 - Corp Mgmt: 2001:db8:40c0::/44
- By region
 - Corp Voice– HQ: 2001:db8:4080::/48
 - Corp Voice Philly: 2001:db8:4081::/48
 - Corp Voice Dublin: 2001:db8:4082::/48
 - Corp Voice- Tokyo: 2001:db8:4083::/48

Policy impact:

- Each BU is allocated
 - 1 block (or more based on capacity/needs)
- Application packet treatment
 - bits 41-44
 - App policy per BU
- Core network routers
 - Analyze first 48 bits
 - Core routing table ~2¹² entries
- Security policies
 - Fewer entries if by BU
 - More entries if by app, more by region

Allocation layering summary

- Consider most frequent/urgent activities or highest needs
 - Throttle an app, isolate a site, re-route traffic, etc.
- Assess importance of routing tables sizing and performance
 - Need to minimize or a non-issue?
- Scope the homogeneity of the network
 - Site/app/BU specific IP-based policies?
- Determine importance of administrative delegation and segmentation
- Prioritize these and other IP address-based policies

Management of host addresses

- Management of IP address spaces
 - IPv4 public, IPv4 private, IPv6 GUA, ULA
- Host address(es) assignment strategy
 - Manual, Autoconfiguration, DHCPv6 management
 - ✓ Prefix delegation, IPv6 address assignment (stateful), IPv6 configuration initialization (combined stateful/stateless)
- Name Resolution DNS (Domain Name System)
 - Maps hierarchical domain names to IP addresses

pc.btdiamondip.com IN AAAA 2001:db8:a04:3c:250:4ff:fe5c:b3f4

Maps IP addresses to domain names

4.f.3.b.c.5.e.f.f.f.4.0.0.5.2.0.c.3.0.0.4.0.a.0.8.b.d.0.1.0.0.2.ip6.arpa. IN PTR pc.btdiamondip.com.

IP address management

- IPAM is a strategic management function
 - Organize IPv4/IPv6 address space in one cohesive inventory database
 - Manage your hierarchy, block types, naming policies and more
- Simplify address allocations
 - Perform address allocations hierarchically and logically without typing in the address!
 - Maintain single authoritative address space inventory for change control
 - Template based subnet allocation and IP address assignment within subnet
- Track IPv6 Deployment
 - Manage current IPv4 network, IPv6 deployment, ongoing IPv4/IPv6
 - Track dual stack host IPv4/IPv6 addresses
- Manage Accountability
 - Scope and delegate administrator access
 - Track administrator and IP address history for troubleshooting and audit reporting
- Automate through IT integration
 - APIs/CLIs facilitate inter-system automation

Additional resources

- IPv6 white papers
- IPv6 Survey Report
- IPv6/IPAM books
- Free IPv6 tools http://goo.gl/18GUUA
- LinkedIn follow us!
- Blog –
 ipamworldwide.blogspot.com
- Web
 - www.btdiamondip.com
 - www.ipamworldwide.com

Thank you

Tim Rooney timothy.rooney@bt.com

