

# Managing an IPv6 Network: Deep Dive into ICMPv6



Laura Knapp WW Business Consultant Laurak@aesclever.com



### **Items to Be Discussed**

- Error Messages
- Informational Messages
- Neighbor Discovery Protocol
- Multicast Listener Discovery Protocol
- Packet MTU Size
- Fragmentation
- Other ICMPv6 functions





# **IPv6: Auto configuration**

#### **Combination**

ARP: ICMP router discovery: ICMP redirect

**Neighbor discovery** 

Multicast and unicast datagrams

**Establishes MAC address on same network** 

ICMPv6 router solicitation

ICMPv6 router advertisement

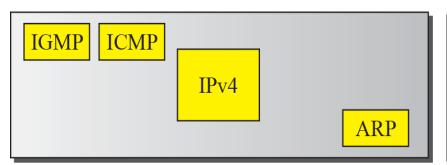
ICMPv6 neighbor solicitation

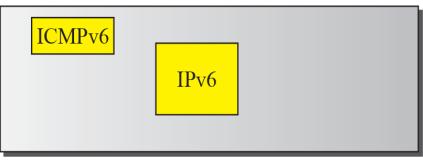
**ICMPv6** redirect

ICMPv6 includes IGMP protocol for Multicast IP

Reduces impact of finding hosts

Stateless: router configures a host with IPv6 address


Stateful: DHCP for IPv6


Link Local Address: IPv6 connectivity on isolated LANs





### ICMPv4 and ICMPv6 Quick View

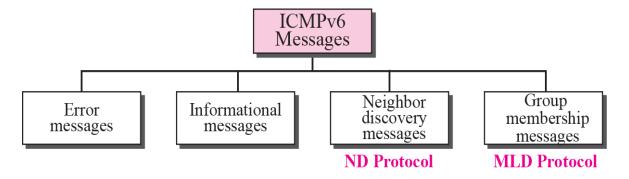




Network layer in version 4

Network layer in version 6

ICMPv6 is more complicated than ICMPv4


Protocol consolidation occurred in IPv6

Additional messages have been added

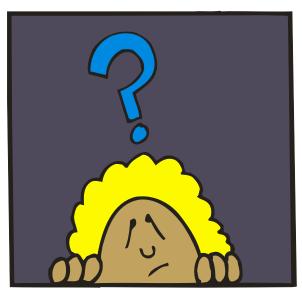


### ICMPv6

- ICMPv6 is used by IPv6 nodes to report errors encountered in processing packets, and to perform other internet-layer functions, such as diagnostics (ICMPv6 "ping")
- ICMPv6 is an integral part of IPv6 and MUST be fully implemented by every IPv6 node
- ICMPv6 messages are grouped into two classes:
  - error messages Types 0-127
  - informational messages Types 128-255
- IPv6 next 'header' value for ICMPv6 is 58






### **ICMPv6** Functions

#### Reports:

- packet processing errors
- intranetwork communications path diagnosis
- multicast membership

#### New functions:

- Neighbor Discovery
  - allows nodes on the same link to discover each other
  - allows nodes to discover each other's addresses
  - finds routers for paths to other networks
  - determines the fully qualified name of a node
  - path MTU discovery determines the maximum path size along a path



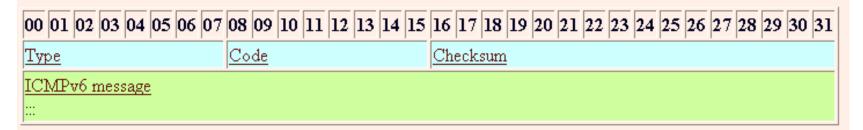


### **ICMPv6** Header

#### **Three Fields**

#### Type (8 bits)

- Indicates the type of the message.
- If the high order bit = 0 (0-127) → error message
- if the high-order bit = 1 (128 255)  $\rightarrow$  information message.


#### Code (8 bits)

 content depends on the message type, and it is used to create an additional level of message granularity.

#### Checksum (16 bits)

• Used to detect errors in the ICMP message and in part of the IPv6 message.







# **ICMPv6 Messages**

ICMPv6 messages are grouped into two classes:

### Error messages

- To provide feedback to a source device about an error that has occurred.
- Generated specifically in response to some sort of action, usually the transmission of a datagram
- Identified as such by having a zero in the high-order bit of their message
- Type field values 0 to 127

### Informational messages

- Used to let devices exchange information, implement certain IP-related features, and perform testing
- Message Types from 128 to 255

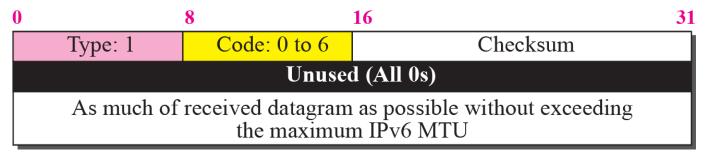
### **Error messages**

| Type | Description              | References |
|------|--------------------------|------------|
| 1    | Destination unreachable: | RFC 2463   |
| 2    | Packet too big.          | RFC 2463   |
| 3    | Time exceeded.           | RFC 2463   |
| 4    | Parameter problem.       | RFC 2463   |

### Informational messages

| Type | Description           | References      |  |  |  |
|------|-----------------------|-----------------|--|--|--|
| 128  | <u>Echo request</u> . | <u>RFC 2463</u> |  |  |  |
| 129  | Echo reply.           | RFC 2463        |  |  |  |

Many of these ICMP types have a "code" field




# **ICMPv6 Error Messages**

| Type<br>Value | Message Name               | Summary Description of Message Type                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|---------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1             | Destination<br>Unreachable | Indicates that a datagram could not be delivered to its destination. <i>Code</i> value provides more information on the nature of the error.  Sent when a datagram cannot be forwarded because it's too big for the MTU of the next hop in the route. This message is only needed in IPv6 because routers cannot fragment oversized messages in IPv6, but they can in IPv4. |  |  |  |  |  |
| 2             | Packet Too Big             |                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| 3             | Time Exceeded              | Sent when a datagram has been discarded prior to delivery because the <i>Hop Limit</i> field was reduced to zero.                                                                                                                                                                                                                                                           |  |  |  |  |  |
| 4             | Parameter<br>Problem       | Indicates a miscellaneous problem (specified by the <i>Code</i> value) in delivering a datagram.                                                                                                                                                                                                                                                                            |  |  |  |  |  |



# **ICMPv6 Error Messages**



#### ICMPv6 error messages:

1 Destination unreachable

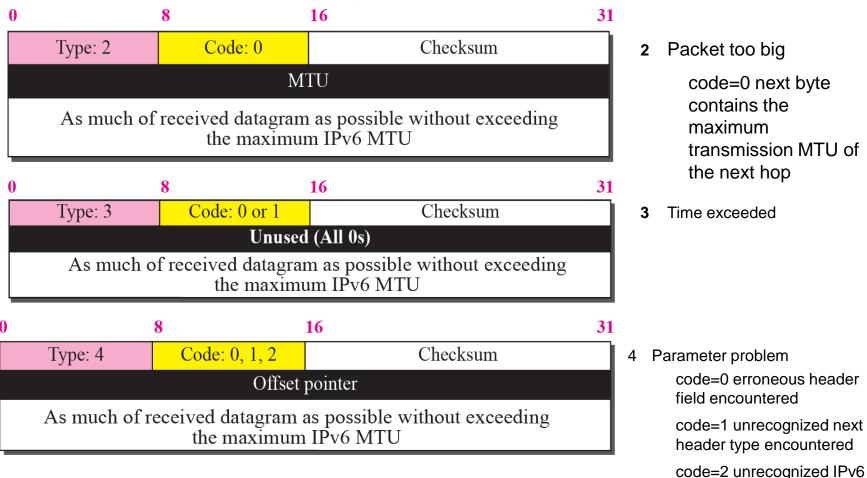
code=0 no route to destination

code=1 communication with destination

prohibited

code=2 (not assigned)

code=3 address unreachable


code=4 port unreachable

code=5 source address failed

code=6 reject route to destination

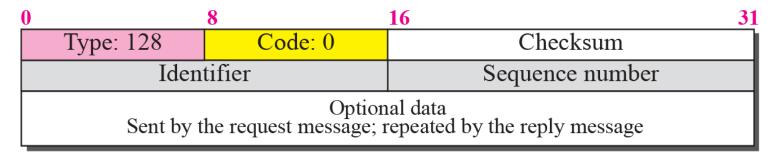


# **ICMPv6 Error Messages**



option encountered




# **ICMPv6** Informational Messages

ICMPv6 Informational Messages

|  | 128                                           | Echo Request             | Sent by a device to test connectivity to another device on the internetwork.                         | 2463 |
|--|-----------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------|------|
|  | 129                                           | Echo Reply               | Sent in reply to an <i>Echo (Request)</i> message; used for testing connectivity.                    | 2463 |
|  | 133                                           | Router<br>Solicitation   | Prompts a router to send a Router Advertisement.                                                     | 2461 |
|  | 134                                           | Router<br>Advertisement  | Sent by routers to tell hosts on the local network the router exists and describe its capabilities.  | 2461 |
|  | 135                                           | Neighbor<br>Solicitation | Sent by a device to request the layer two address of another device while providing its own as well. | 2461 |
|  | 136 Neighbor<br>Advertisement<br>137 Redirect |                          | Provides information about a host to other devices on the <u>network</u> .                           | 2461 |
|  |                                               |                          | Redirects transmissions from a host to either an immediate neighbor on the network or a router.      | 2461 |
|  | 138                                           | Router<br>Renumbering    | Conveys renumbering information for router renumbering.                                              | 2894 |



# **ICMPv6** Informational Messages



### 128 Echo request

code=0 and Identifier and sequence number carried

#### 129 Echo reply

code=0 and identifier and sequence number carried

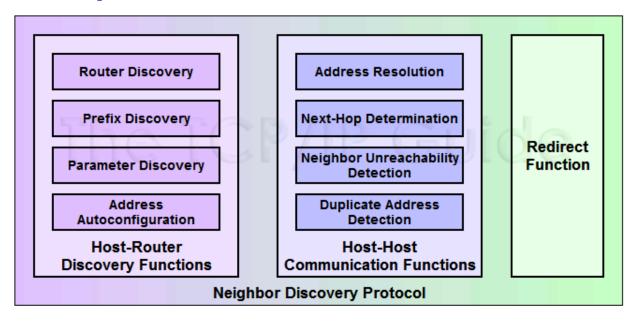
| 0                                                                        |         | 8       | 16 31           |  |  |  |  |
|--------------------------------------------------------------------------|---------|---------|-----------------|--|--|--|--|
| Ty                                                                       | pe: 129 | Code: 0 | Checksum        |  |  |  |  |
| Identifier                                                               |         |         | Sequence number |  |  |  |  |
| Optional data Sent by the request message; repeated by the reply message |         |         |                 |  |  |  |  |



# ICMPv6 Neighbor Discovery Protocol (NDP)

#### Defined in RFC 2461

- Combines prior IPV4 functions
  - ARP (RFC 826)
  - Router Discovery (RFC 1256)
  - Redirect Message (RFC 792)


#### Mechanisms to:

- Discover routers
- Prefix discovery for on-link
- Parameter discovery (i.e link MTU)
- Address auto-configuration
- Address resolution
- Next hop determination
- Neighbor unreachable
- Duplicate address
- Redirect





# **NDP Groups**



### Main three functions:

- 1. Host-Router Functions
- 2. Host-Host Communication Functions
- 3. Redirect Function



# **NDP Functional Groups**

#### **Host-Router Discovery Functions**

#### Router Discovery

Core function of this group: the method by which hosts locate routers on their local network

#### Prefix Discovery

- Closely related to the process of router discovery
- Determines what network they are on, which tells them how to differentiate between local and distant destinations and whether to attempt direct or indirect delivery of datagrams

#### Parameter Discovery

A host learns important parameters about the local network and/or routers, such as the MTU of the local link.

#### Address Auto-configuration

 Hosts in IPv6 are designed to be able to automatically configure themselves, but this requires information that is normally provided by a router

#### **Host-Host communications**

#### Address Resolution

- The process by which a device determines the layer two address of another device on the local network from that device's layer three (IP) address
- Performed by ARP in IP version 4.

#### Next-Hop Determination

Looking at an IP datagram's destination address and determining where it should next be sent.

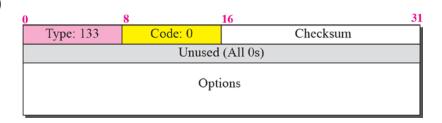
#### Neighbour Unreachability Detection

Determining whether or not a neighbour device can be directly contacted

#### Duplicate Address Detection (DAD)

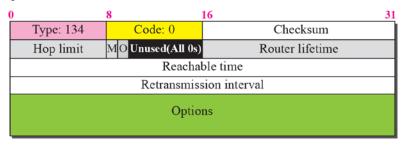
Determining if an address that a device wishes to use already exists on the network

#### **Redirect Function**


The technique whereby a router informs a host of a better next-hop node to use for a particular destination



### ICMPv6 Router Solicitation/Advertisement


### **Router Solicitation (ICMPv6 Type 133)**

Sent by hosts to request that any local routers send a *Router Advertisement* message so they don't have to wait for the next regular advertisement message.



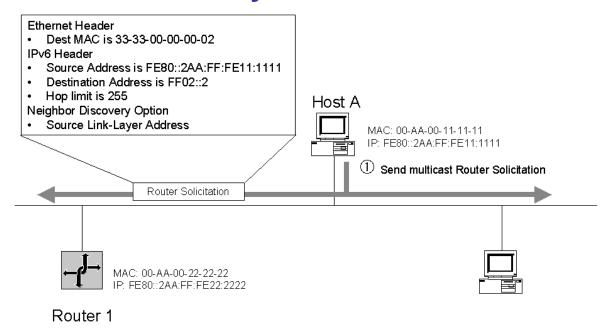
### **Router Advertisement (ICMPv6 Type 134)**

Sent regularly by routers to tell hosts that they exist and to provide them with important prefix and parameter Information.



Sent on periodic basis from router to the 'all nodes address'

Hop limit should be 255

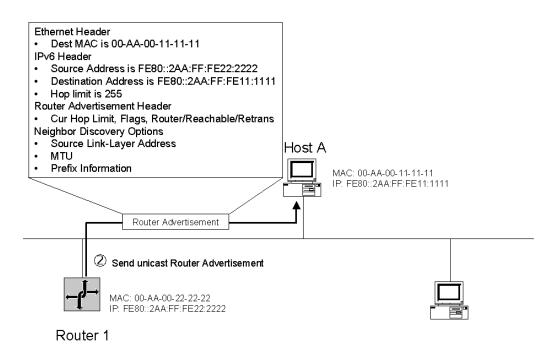

Could include security header

M=1 use DHCP for address configuration

O=1 use stateful protocol for address configuration



# **IPv6** Router Discovery




To forward packets to off-link destinations, Host A must discover the presence of Router 1

Host A sends a multicast Router Solicitation to the address FF02::2



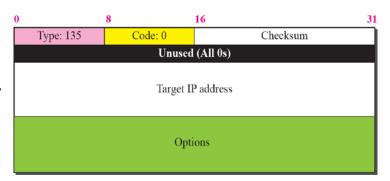
# **Router Discovery Response**

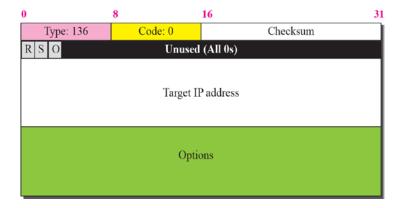


Router 1, having registered the multicast address of 33-33-00-00-00-02 with its Ethernet adapter, receives and processes the Router Solicitation.

Router 1 responds with a unicast Router Advertisement message containing configuration parameters and local link prefixes

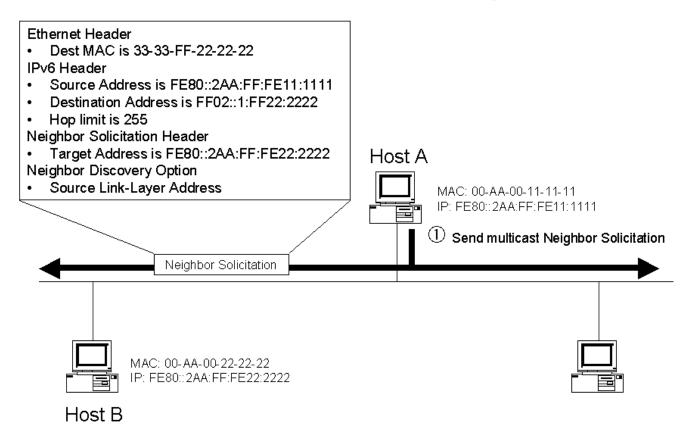



# **ICMPv6 Neighbor Messages**


### **Neighbor Solicitation (ICMPv6 Type 135)**

- Nodes ask for link layer address of a target while providing their own link layer address to the target.
- Multicast to resolve an address in the range FF02::::001:FF00:000 to FF02::::001:FFF:FFF
- Take low order 32 bits of address and append to the following prefix: FF02::::001.
- Unicast to verify the reachability of a neighbor.

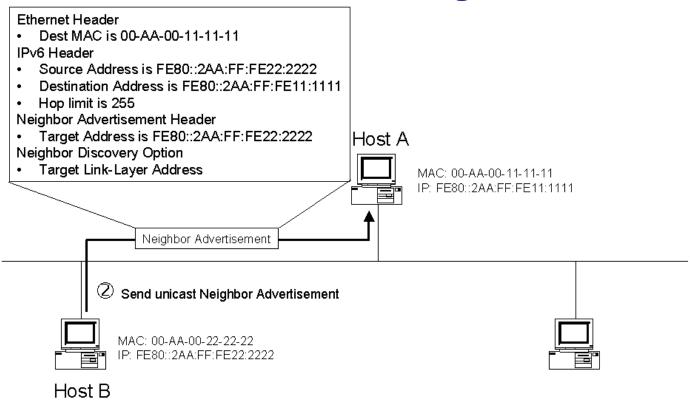
### **Neighbor Advertisement (ICMPv6 Type 136)**


- Sent by nodes in response to Neighbor solicitation message.
- Can be sent unsolicited to quickly ask for information
- Identify sender as router, destination address, or over-ride existing cache








# **Address Resolution: Multicast Neighbor Solicitation**



To send a packet to Host B, Host A must use address resolution to resolve Host B's link-layer address.



# **Address Resolution: Unicast Neighbor Notification**



Host B, having registered the solicited-node multicast address of 33-33-FF-22-22-22 with its Ethernet adapter, receives and processes the Neighbour Solicitation.

Host B responds with a unicast Neighbour Advertisement message



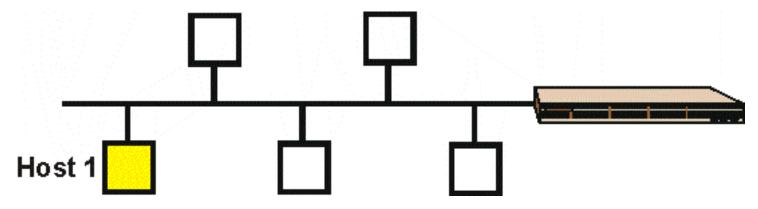
**Neighbor Solicitation and Advertisement** 

| Traces Query Builder Packet Summary Session Summary |                      |        |                 |                 |          |          |  |  |  |
|-----------------------------------------------------|----------------------|--------|-----------------|-----------------|----------|----------|--|--|--|
| Packet Summary                                      |                      |        |                 |                 |          |          |  |  |  |
| ID                                                  | ID Timestamp         |        | Local IP        | Rmt. IP         | Protocol | Messages |  |  |  |
| 320                                                 | 06:14:34:04          | 405 72 | 2001:428:3804:0 | FF02::1:FF00:1  | ICMPv6   |          |  |  |  |
| 321                                                 | 21 06:14:34:0460 161 |        | 10.2.0.236      | 239.255.255.250 | UDP      |          |  |  |  |
| 322                                                 | 06:14:34:08          | 596 72 | FE80::1         | 2001:428:3804:0 | ICMPv6   |          |  |  |  |

```
Traces | Query Builder | Packet Summary | Session Summary | Packet Details
   Packet Details
   Packet Details Hex
  -Packet Details -
  Packet ID: 320
  Time: 4/10/2012 06:14:34:0405 HAT
  IP Version 6
   Source
              : 2001:428:3804:0:D78:D8B8:F88D:8A5A
  Destination : FF02::1:FF00:1
  Traffic Class : 0x000
   Flow Label: 0x000
  Pavload Length: 32
  Next Header (Protocol) : ICMPv6
  Hop Limit: 255
  ICMPv6 Informational Message:
  Type: Neighbor Solicitation (135)
   Code: 0
  Checksum: 0xEE6B
  Target Addrress: FE80::1
   ICMPv6 Option
       Type: Source Link layer Address(1)
       Length: 8 bytes
       Link-layer address: EC:55:F9:C1:E1:51
```

```
Packet Details
Packet Details Hex
-Packet Details
Packet ID : 322
Time : 4/10/2012 06:14:34:0596 HAT
IP Version 6
            : FE80::1
Destination: 2001:428:3804:0:D78:D8B8:F88D:8A5A
Traffic Class: 0x000
Flow Label: 0x000
Payload Length: 32
Next Header(Protocol) : ICMPv6
Hop Limit: 255
ICMPv6 Informational Message:
Type: Neighbor Advertisement (136)
Code: 0
Checksum: 0xD8D5
Flags:
  1... = Router: Set
  .1.. = Solicited: Set
  ..1. = Override: Set
Target Addrress: FE80::1
ICMPv6 Option
    Type: Target Link layer Address(2)
    Length: 8 bytes
    Link-layer address: 00:08:E2:60:18:1A
```




# **Neighbor Discovery Table**

### Adding a Static Entry in the Neighbour Discovery Table (Cisco Feature)

RouterA(config)#ipv6 unicast-routing
RouterA(config)#ipv6 neighbor fec0::1:0:0:1:b fastEthernet 0/0 0080.12ff.6633
RouterA(config)#exit
RouterA#show ipv6 neighbors
IPv6 Address Age Link-layer Addr State Interface
FEC0::1:200:86FF:FE4B:F9CE 15 0000.864b.f9ce STALE FastEthernet0/0
FEC0::1:0:0:1:B - 0080.12ff.6633 REACH FastEthernet0/0
FE80::200:86FF:FE4B:F9CE 15 0000.864b.f9ce STALE FastEthernet0/0



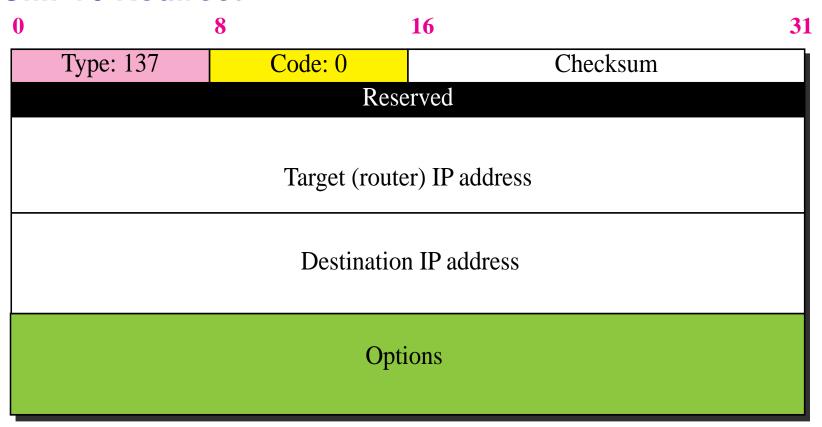
# **IPv6** Auto-configuration



- Host 1 comes on line and generates a link local address.
- Host 1 sends out a query called neighbor discovery to the same address to verify uniqueness. If there is a positive response, a random number generator is used to generate a new address.
- Host 1 multicasts a router solicitation message to all routers.
- Routers respond with a router advertisement that contains the IPv6 Address prefix and other information.
- Host 1 automatically configures its global address by appending its interface ID to the AGA
- Host 1 can now communicate



### **Prefix Advertisement**


| : | Packet Su | mmary —       |                  |          |         |          |          |               |           |                |                |                |
|---|-----------|---------------|------------------|----------|---------|----------|----------|---------------|-----------|----------------|----------------|----------------|
|   | ID        | Timestamp     | Datagram<br>Size | Local IP | Rmt. IP | Protocol | Messages | Local<br>Port | Rmt. Port | Seq.<br>Number | Ack.<br>Number | Window<br>Size |
|   | 132       | 06:13:39:2874 | 104              | FE80::1  | FF02::1 | ICMPv6   |          |               |           |                |                |                |

```
Packet Details
Packet Details Hex
-Packet Details
Packet ID : 132
Time: 4/10/2012 06:13:39:2874 HAT
IP Version 6
          : FE80::1
Source
Destination : FF02::1
Traffic Class : 0x000
Flow Label: 0x000
Payload Length: 64
Next Header (Protocol) : ICMPv6
Hop Limit: 255
ICMPv6 Informational Message:
Type: Router Advertisement (134)
Code: 0
Checksum: 0xC673
Cur hop limit: 64
Flags:
  1... = Managed address configuration: Set
 .0.. .... = Other configuration: Not Set
 ..0. .... = Home Agent: Not Set
 ... 0 0... = Default Router Preference: Medium
  .... .0.. = Proxy: Not Set
Router lifetime (s): 1800
Reachable time (ms): 0
Retrans timer (ms): 0
```

```
ICMPv6 Option
   Type: Source Link layer Address(1)
   Length: 8 bytes
   Link-layer address: 00:08:E2:60:18:1A
ICMPv6 Option
   Type: MTU(5)
   Length: 8 bytes
   MTU: 1500
ICMPv6 Option
    Type: Prefix Information(3)
    Length: 32 bytes
    Prefix Length: 64
    Flags:
     1... = On-link flag(L): Set
      .1.. = Autonomous address-configuration flag(A): Set
   Valid Lifetime: 2592000
    Preferred Lifetime: 604800
    Prefix(IPv6 address): 2001:428:3804::
```



### **ICMPv6** Redirect



An option is added to let the host know the target router's physical address.





1. A router informs an originating host of the IP address of a router available on the local link that is "closer" to the destination.

"Closer" is routing metric function used to reach the destination network segment. This condition can occur when there are multiple routers on a network segment and the originating host chooses a default router and it is not the best one to use to reach the destination

2. A router informs an originating host that the destination is a neighbour (it is on the same link as the originating host).

This condition can occur when the prefix list of a host does not include the prefix of the destination. Because the destination does not match a prefix in the list, the originating host forwards the packet to its default router



### **Router Redirect Process**



To inform Host A that subsequent packets to the destination of FEC0::2:2AA:EE:FE99:9999 should be sent to Router 2, Router 1 sends a Redirect message to Host A

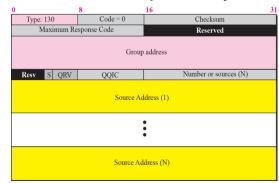


# ICMPv6 Multicast Listener (MLD)

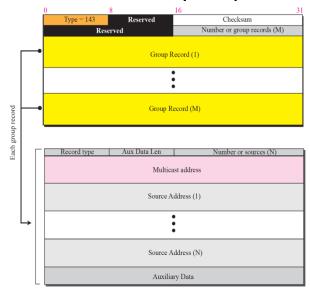
Took pieces from IGMP (Internet Group Management Protocol) (RFC 1112 and RFC 2236) and merged into new protocol

Defined in RFC 2710.

MLD is a sub-protocol of ICMPv6.

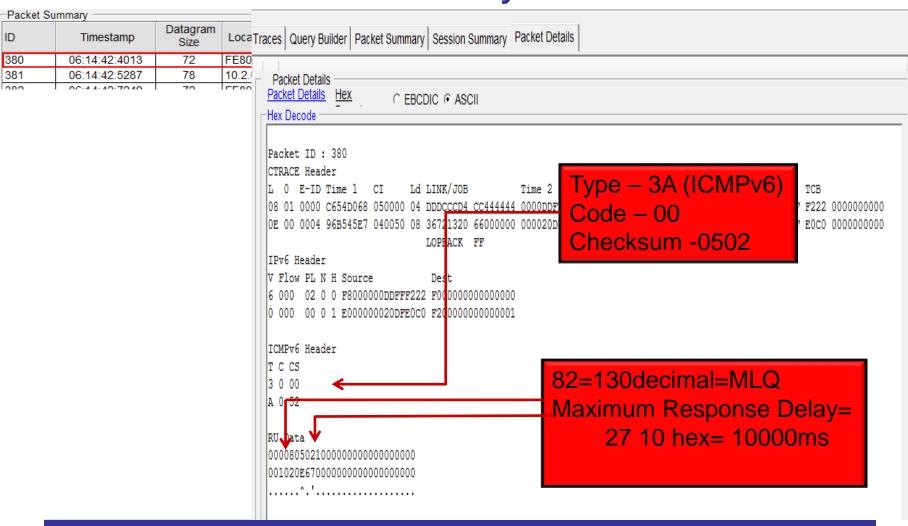

Allows routers to discover nodes that wish to receive multicast packets on all the routers links

Query can be general or specific:


- Tell me all nodes with multicast address x
- Tell me all nodes and their multicast addresses

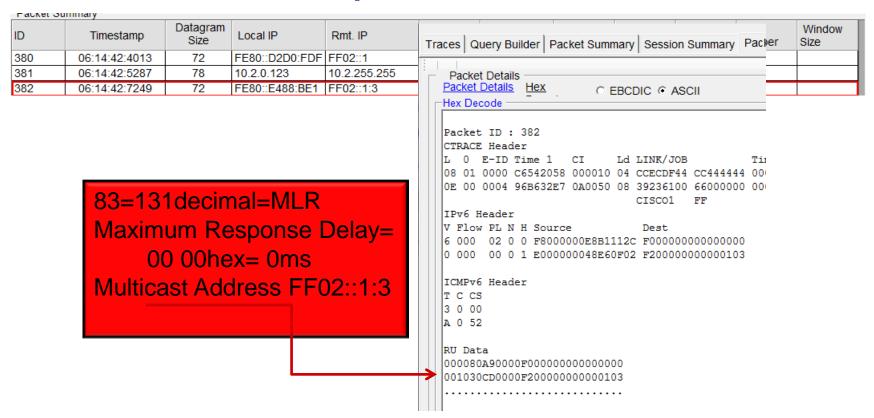
Maximum response delay only is used with the Query message

### Membership Query




### Membership Report






# **Trace Multicast Listener Query**





# **Multicast Listener Report**





# **ICMPv6 Path MTU Discovery**

#### **RFC 1981**

To enable hosts to discover the min. MTU on a path to a particular destination

Fragmentation in IPv6 is not performed by intermediary routers

The source node may fragment packets by itself only when the path MTU is smaller than the packets to deliver

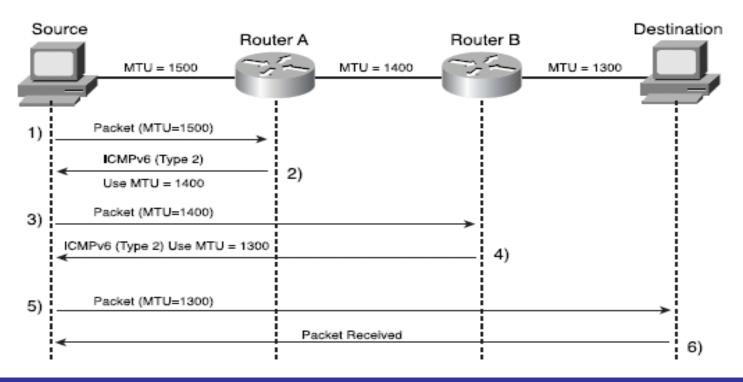
PMTUD for IPv6 uses ICMPv6 error message

Type 2 Packet Too Big

#### MTU Size Error Feedback

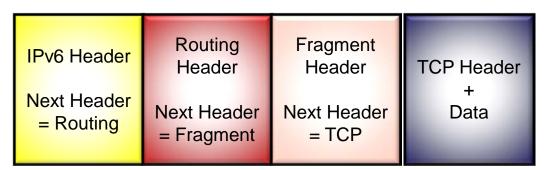
- If a router is forced to try sending a datagram that is too large over a physical link, it must drop the datagrams, since it cannot fragment them
- A feedback process has been defined using ICMPv6 that lets routers tell source devices when the datagrams they are using are too large for the route




### How Does a Node know what MTU size to Use?

#### 1. Use Default MTU

Use the default MTU of 1280, which all physical networks must be able to handle


#### 2. Use Path MTU Discovery feature

A node <u>sends messages</u> over a route to determine the overall minimum MTU





# **Fragmentation**

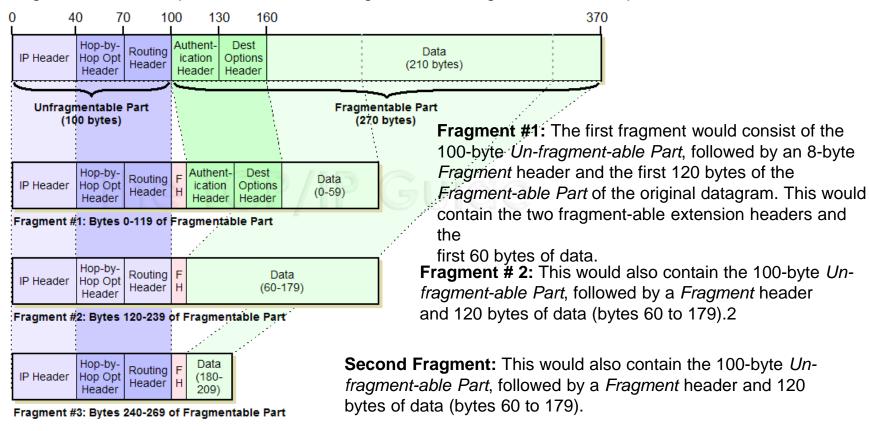


For purposes of fragmentation, IPv6 datagrams are broken into two pieces:

### • Un-fragment-able Part

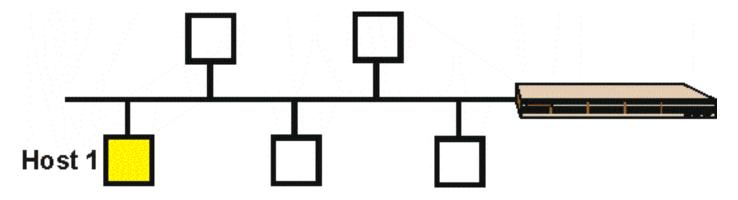
Includes the main header of the original datagram + any extension headers that need to be present in each fragment - *Hop-By-Hop Options*, *Destination Options* (for those options to be processed by devices along a route) and *Routing*.

#### Fragment-able Part


Data portion of the datagram + other extension headers if present - authentication Header, Encapsulating <u>Security</u> Payload and/or Destination Options (for options to be processed only by the final destination).

The *Un-fragment-able Part* must be present in each fragment, while the **Fragment-able Part** is split up amongst the fragments.




# **Fragmentation Example**

Suppose we need to send this over a link with an MTU of only 230 bytes. Three fragments are created. This is due to the need to put the two 30-byte un-fragment-able extension headers in each fragment and the requirement that each fragment be a length that is a multiple of 8.





### **ICMPv6 Model Host**



### Each host is to maintain the following:

- Neighbor Cache
- Destination Cache
- Prefix List
- Default Router List
- LinkMTU
- CurHopLimit
- BaseReachable Time
- Reachable Time
- Retransmit Timer



# **Changes Needed to Implement IPv6**

#### **Hosts**

- Implement IPv6 code in operating system
- TCP/UDP aware of IPv6
- Sockets/Winsock library updates for IPv6
- Domain Name Server updates for IPv6

#### **Domain Name Server (DNS)**

- Many products already support 128 bit addresses
- Uses 'AAAA' records for IPv6
- IP6.INT (in\_addr\_arpa in IPv4)

#### **Routers**

- IPv6 forwarding protocols
- Routing protocols updated to support IPv6
- Management needs to support ICMPv6
- · Implement transition mechanisms

#### **IPv6 Protocol Status**

- RIPv6 Same as RIPv2
- OSPFv6 Updated for IPv6
- EIGRP Extensions implemented
- IDRP Recommended for exterior protocol over BGP4
- BGP4+ Preferred implementation in IPv6 today







ありがとうございました





















ขอบคุณ

Tesekkürler











Tamil

650-617-2400

Obrigado



### **IPv6 References**

#### **IPv6 Home Page**

http://www.ietf.org/

http://www.getipv6.info/

http://www.ipv6forum.com

http://arin.net

http://www.internet2.edu

http://www.ipv6.org

http://technet.microsoft.com/en-us/network/bb530961.aspx

http://en.wikipedia.org/wiki/IPv6

http://test-ipv6.com/

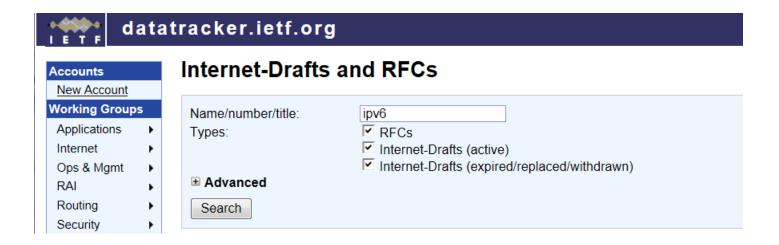
http://www.ipv6.com/

http://www.google.com/intl/en/ipv6/

http://www.cisco.com/web/solutions/trends/ipv6/index.html



New Internet Protocol - Prentice Hall - ISBN 0-13-241936-x IPNG and the TCP/IP Protocols - John Wiley and Sons - ISBN-0-471-13088-5 IPv6 The New Internet Protocol - ISBN-0-13-24-241936 IPNG Internet Protocol Next Generation - ISBN-0-201-63395-7 Internetworking IPv6 with Cisco Routers - ISBN 0-07-022831-1






## **IPv6 RFCs**

View any IPv6 RFC

http://datatracker.ietf.org/doc/search/

