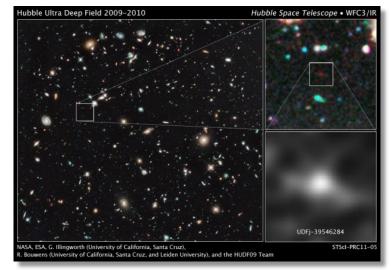


IPv6 Address Design


A Few Practical Principles

North American IPv6 Summit 2013 19 April, 2013

How Big is the IPv6 Address Space?

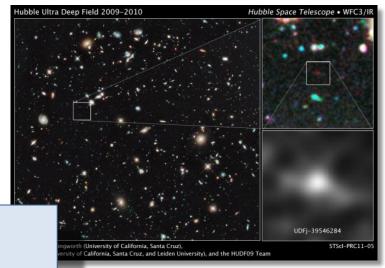
- IPv4 developed 1973 1977
 - $-2^{32} = 4.3$ billion addresses
 - More than anyone could possibly use!
- ▶ IPv6 developed mid-1990s
 - $-2^{128} = 3.4 \times 10^{38}$ addresses
 - More than anyone could possibly use?

Galaxy UDFj-39546284

How Big is the IPv6 Address Space?

- ▶ IPv4 developed 1973 1977
 - $-2^{32} = 4.3$ billion addresses
 - More than anyone could possibly use!
- IPv6 developed mid-1990s
 - $-2^{128} = 3.4 \times 10^{38}$ addresses

Some Perspective:


1 picometer = 10⁻¹² (one trillionth) meter

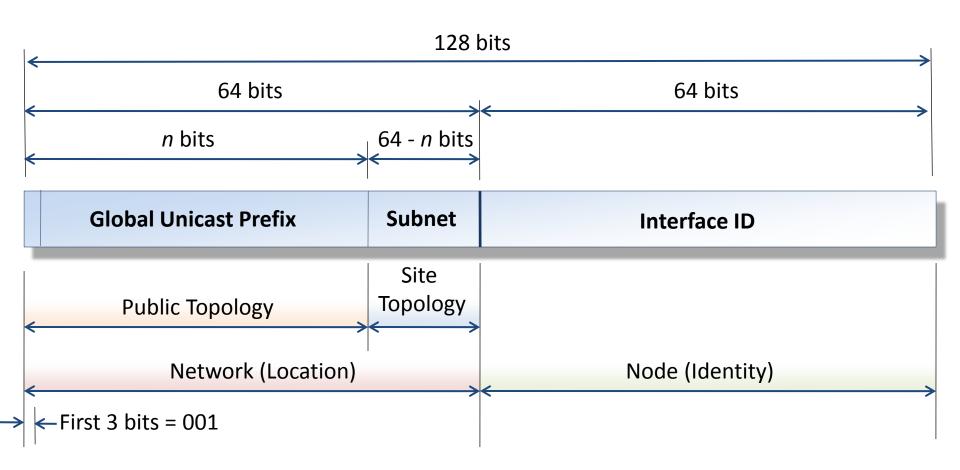
2³² picometers = 4.29 millimeters

- length of a small ant

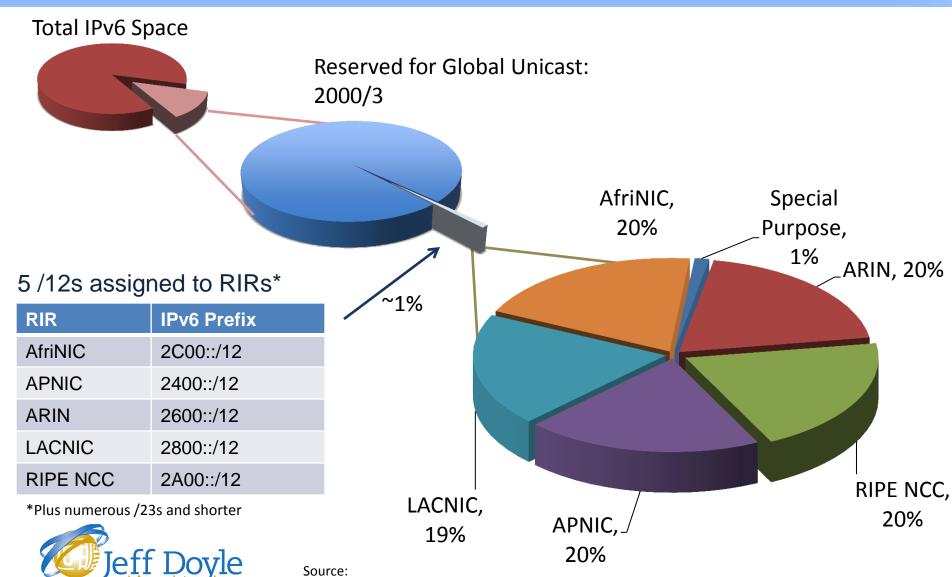
 2^{128} picometers = 3.4×10^{23} kilometers

- 34 billion light years
- Furthest visible object in universe: 13.2B LYs

Galaxy UDFj-39546284


Abandon IPv4 Thinking!

- Foremost IPv4 address design consideration: Address Conservation
- Balancing act between:
 - Number of subnets
 - Number of hosts on each subnet
- Result: VLSM
 - Complex
 - Hard to manage
- Legacy "class" categories still sometimes used in IPv4
 - Outdated and misleading
- No such thing as subnet masks in IPv6
 - CIDR-style prefix length notation always used


2001:db8:1234:abcd:5401:3c:15:85/48

IPv6 Global Unicast Address Structure

Global IPv6 Unicast Prefix Allocations

http://www.iana.org/assignments/ipv6-unicast-address-assignments/ipv6-unicast-address-assignments.xml Copyright © 2013 Jeff Doyle and Associates, Inc.

In Practical Terms...

- Typical IPv6 prefix assignments:
 - Service provider (LIR): /32
 - Large end user: /48
 - Medium end user: /56
 - Small/ Home/ SOHO: /64 or /60

- \rightarrow 2³² /64 subnets
- → 65,536 /64 subnets
- → 256 /64 subnets
- → 1 or 16 /64 subnets

- > Addres
 - Is th
 - Yes!
- If you right p

Is this really practical?

nave the

ation

What Prefix Size is Right for You?

- How do you define large, medium, and small?
 - Are these arbitrary boundaries?
- Why not assign /48 per site?
 - Site = one building
 - 30 buildings per campus = 30 /48s
 - And yes, a home (apartment or house) is a site!
 - It's not about waste, it's about consistency
- > /48 for all allocations was original policy (RFC 3177)
 - "Home network subscribers, connecting though on-demand or always-on connections should receive a /48."
- Obsoleted by RFC 6177
 - Concerns about waste
 - Intention is that IPv6 should last for 100 years
- ARIN supports a liberal allocation policy

What Prefix Size is Right for You?

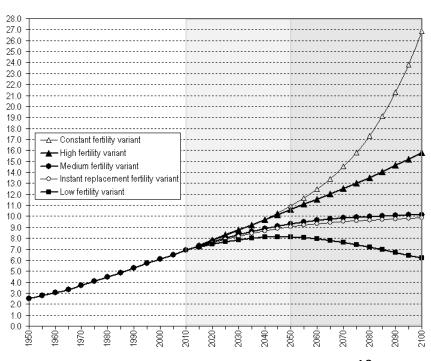
ARIN Number Resource Policy Manual:

2.10. End Site

"The term End Site shall mean a single structure or service delivery address, or, in the case of a multi-tenant structure, a single tenant within said structure (a single customer location)."

6.5.8.2.1.Standard Sites

"An organization may request up to a /48 for each site in its network, and any sites that will be operational within 12 months."


ARIN supports a liberal allocation policy

Are You Ready for IPv7?

- > All current global unicast IPv6 prefixes start with 001
 - This is 1/8 of the entire IPv6 space
 - -2^{45} = 35 trillion /48 prefixes
- > UN projections for world population in 2100:
 - Median figure: 10 billion
 - High end: 16 billion
- 2⁴⁵ / 16 billion = 2199 /48s per person
 - And, we still have 85% of the IPv6 space held in reserve
- Opinion: IP will become obsolete before IPv6 is depleted

Subnet Assignments

- > RFC 4291 specifies that Interface-ID is 64 bits
 - Several IPv6 functions depend on this
- > All subnets should be /64
 - Simplifies address management
 - Random addressing improves security
- Trend is to use stateful address assignments (DHCPv6)

What About Point-to-Point Links?

- > 18 million trillion addresses in a /64 link
 - And I will only ever use 2 of them?
 - Are you kidding???
- > People have a very hard time accepting this
 - Again: This is not IPv4!
 - What else are you going to do with those addresses?
- > It's a matter of comprehending the scale
 - 5000 out of 2^{64} is not really any bigger than 2 out of 2^{64}

Point-to-Point Subnets (Battling RFCs)

- Reasons for using /64
 - RFC 3627
 - RFC 5375 => /64 usage endorsed and encouraged
 - Design consistency
 - Anycast problems are not significant on PtP links
 - Subnet-Router Anycast
 - MIPv6 Home Agent Anycast
- Reasons for using /127
 - RFC 6164
 - Ping-pong vulnerability
 - This is an issue with older version of ICMPv6 (RFC 2463)
 - Issue is corrected in newer version of ICMPv6 (RFC 4443)
 - Vendors: Upgrade your code!
 - Neighbor cache exhaustion vulnerability

Point-to-Point Subnets (cont.)

- Insist that your vendors use current ICMPv6!
- Don't use /126
 - This is IPv4 thinking
 - "Subnet number" is meaningless in IPv6
 - IPv6 does not use broadcast addresses
- > Potential compromise:
 - Assign /64 per PtP subnet
 - Address /127 out of the /64

What Do I Get in Exchange for Waste?

- Simplicity
 - One-size-fits-all subnets
- Manageability
 - Hex is much easier to interpret at binary level than decimal
- > Scalability
 - Room to grow
- > Flexibility
 - Room to change

Designing for Simplicity

- Start by mapping "working" bits
 - Generally the bits between assigned prefix and Interface-ID
- Group by hex digit (nibble)
 - 4 bits per hex digit
- Define "meanings" you need to operate
 - Geographic area? Logical topology? Type designation? User ID?
- > Try to keep "meanings" on hex boundaries
 - Defined meanings will then be some multiple of 2⁴ⁿ
 - Ex: 16, 256, 4096, 65536...
- Don't get carried away with meanings
 - No need for 10 layers of address hierarchy if 4 will do

Designing for Simplicity (continued)

- Use zero space as much as possible
 - Which address is easier to read?
 - 2001:DB8:2405:83FC:72A6:3452:19ED:4727
 - 2001:DB8:2405:C::27
- Benefit: Operations quickly learns to focus on meaningful bits
 - Ignore public prefix (usually)
 - Ignore Interface-ID (usually)
 - A few hex digits tell operations most of what they need to know

Designing for Scale

- > Leave "zero" space whenever possible
 - Designate as Reserved
- > Insert between "meaningful" digits or bits
 - Allows future expansion in two directions

Designing for the Future

- > Trying to anticipate the unanticipated
 - A challenge for any kind of design
- Another reason for well-placed Reserved (zero) space
 - Horizontal Reserved space
 - Vertical Reserved space
- Do not integrate IPv4 into an IPv6 design!
 - Reading IPv4 in hex is (almost) meaningless
 - IPv4 will (eventually) go away

Other Issues

- DNS design and management is critical
 - DNS issues are well documented
- > IP Address Management is critical
 - IPv6 design is not easy to manage via spreadsheets
 - Good luck finding integrated DNS and DHCPv6 management
- Abandon IPv4 thinking!

Questions?

jdoyle@doyleassociates.net

www.doyleassociates.net

+1-303-428-4680

