Meet the new IP,
Same as the old IP.

Paul Ebersman, IPv6 Evangelist
North American IPv6 Summit 2012
What you’ll see immediately

- More addresses
 - 340 undecillion

- Bigger, beefier addresses
 - 2001:db8:dead:beef::1

- Lots more addresses per interface

- More “magic”
7 Layer View (Sorta)

- TCP
- UDP
- SCTP
- IPv6
- IPv4
- TokenRing
- WLAN
- Ethernet
- SMTP
- HTTP
- SIP
Routing Efficiencies

- Fixed header size
- Extension header chain
- Flow labels in header
- No intermediate fragmentation (PMTUD)
- No checksums
Network Efficiencies

- No broadcast
- Multicast
- NS/Solicited Node, no ARP
- ICMPv6
Address Types

- Unicast
- Multicast
- Anycast
Address Scope

- Link Local
- Global Unicast
- Unique Local
- Transition
- Misc (Site Local, Reserved, Special)
Link Local

- Local (broadcast) Domain
- fe80::/64
- Similar to APIPA (169.254.0.0/16)
- Reusable on all interfaces
Global Unicast

- Globally routable
- Unique
- “Public”
- Use ‘em everywhere!
Unique Local

- Not globally routable
- Not unique (but registerable…)
- Replacement for RFC1918 (if you must)
More addresses per interface!

- Use ‘em; we’ll make more
- Multiple default routes
- Quiescence
- How do it know? (RFC 3484)
Subnet Planning
Sane Subnetting

- You can get enough IPv6 space
 - Do the architecture you want, not the one you’re stuck with
 - Use GUA space everywhere, make NAT a choice
 - Map your subnets to your process/provisioning or business model
 - Do a scheme that aggregates and makes ACLs sane
Sample /32 Plan by Geography

- 2001:db8:abcd::/36
 - City: 4 bits = 16 possible locations

- 2001:db8:abcd::/40
 - Hub: 4 bits = 16 possible hubs per city

- 2001:db8:abcd::/48
 - Floor: 8 bits = 256 floors per hub.

- 2001:db8:abcd:12xx::/56
 - Switch: 8 bits = 256 Switches per floor.

- 2001:db8:abcd:1234::/64
 - VLAN: 8 bits = 256 VLANs per switch.
Prefix Lengths

- /48 is minimum routable chunk
- /64 for all non-p2p subnets
- /127 for p2p links (RFC 6164)
- /128 for loopbacks
- Use /64 each for p2p/lb, pair for each routing domain
Multi-homing and PI addresses

- If you qualified in v4, you still do
- If PI space would have been useful in v4, it still is
- If you didn’t understand it in v4, v6 won’t help you…
SLAAC vs DHCP
SLAAC

- SLAAC == StateLess Address AutoConfiguration

- Uses Router Advertisement (RA) messages

- Network policy moved to the edge
Interface ID generation

- EUI-64 uses the mac address and an algorithm to generate interface ID
 - Windows7/Vista randomly generates interface ID by default
 - Servers and LINUX/UNIX mostly use EUI-64
MAC address to Interface ID

- EUI-64 uses the MAC address and an algorithm to generate interface ID.
- Windows 7/Vista randomly generates interface ID by default.
- Servers and LINUX/UNIX mostly use EUI-64.
Client configures link-local address

- Generates 64 bit host ID (EUID from MAC, random)
- Uses link local prefix and EUID to generate tentative address (such as fe80::028c:f5ff:fe05:4235)
- Does DAD (Duplicate Address Detection)
 - Sends a multicast Neighbor Solicitation message containing its new tentative address to the solicited node address
 - If no other node responds with a Neighbor Advertisement using that address, the host configures itself with that address
Host now looks for Router Advertisement (RA) Messages

- Sends multicast Router Solicitation message
- Listens for RA messages
- Configures itself based on contents of RA message, including doing DHCPv6
RA Message Contents

- **Local prefix(es), including A (autonomous address configuration) flag**

- **Router info**
 - Router's link-level address
 - Lifetime of route
 - Router priority

- **Flags:** M (ManagedAddress) flag and O (OtherConfiguration) flag

- **Maximum Transmission Unit (MTU) of upstream link**
Not in RA Messages...

- RDNS server
- NTP or “other” configuration
- RFC 6106 for RDNS in RA
 - Lack of client support...
No Choice…

- Must run both RA and DHCPv6 for most sites…
 - No DHCPv6 without an RA message with M or O flag on
 - Many options not available to clients without DHCPv6
 - No default gateway in DHCPv6
 - Must configure DHCP and edges
DHCPv6 features

- Not BOOTP! 😊
- No broadcast!
- New ports (546, 547)
- Vendor options in TLV tuples
- Reconfigure now secure
DHCPv6 vs DHCPv4 messages

<table>
<thead>
<tr>
<th>DHCPv6 Message type</th>
<th>DHCPv4 message type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLICIT (1)</td>
<td>DHCPDISCOVER</td>
</tr>
<tr>
<td>ADVERTISE (2)</td>
<td>DHCPOFFER</td>
</tr>
<tr>
<td>REQUEST (3), RENEW (5), REBIND (6)</td>
<td>DHCPREQUEST</td>
</tr>
<tr>
<td>REPLY (7)</td>
<td>DHCPACK/DHCPNAK</td>
</tr>
<tr>
<td>RELEASE (8)</td>
<td>DHCPRELEASE</td>
</tr>
<tr>
<td>INFORMATION-REQUEST (11)</td>
<td>DHCPINFORM</td>
</tr>
<tr>
<td>DECLINE (9)</td>
<td>DHCPDECLINE</td>
</tr>
<tr>
<td>CONFIRM (4)</td>
<td>--</td>
</tr>
<tr>
<td>RECONFIGURE (10)</td>
<td>DHCPFORCERENEW</td>
</tr>
<tr>
<td>RELAY-FORW (12), RELAY-REPLY (13)</td>
<td>--</td>
</tr>
</tbody>
</table>
Use the whole /64!

- IPv4 address shortages made pool size precious
- IPv6 has plenty
- Protect from brute force scans
- Do pay attention, though…
Reconfigure

- Client and server must support and be configured for it

- Now has security

- With quiescence and reconfigure, renumbering is easy (mostly)
Mac address as ID is flawed:
- Not always unique
- Can be altered
- Multi-interface hosts confuse things

But it’s what most of the eyeballs on the Internet are ID’ed by currently

DUID (DHCP Unique Identifier) is the replacement in IPv6
Yes, mac addresses sucks.

DUIDs suck differently.

– Can’t correlate v4 and v6 addr to same host
– Can’t get mac address from DUID
– Persistent storage of DUID may cause surprises
What DUIDs do right

- One DUID per DHCP server or client
- One Identity Association (IA) per network interface on a host
- A host can DHCP for all interfaces via DUID/IA as unique key
Identity Associations

- **Types:**
 - **IA_TA**: temporary address(es), i.e. privacy addrs
 - **IA_NA**: non-temporary address(es), i.e. not privacy addrs
 - **IA_PD**: prefix delegation
Prefix Delegation

- Delegate a prefix to a device

- Device can delegate longer prefixes to its own clients

- Likely scenario is home/CPE routers

- Lots of potential but not lots of gear available now
ICMPv6
ICMPv6

- Required for:
 - DAD
 - Finding routers (RA/SLAAC)
 - Finding servers (DHCP)
 - PMTUD
 - Connectivity (echo request/response)
 - Network errors
ICMPv6 Filtering

- Filter it all and you don’t have a useful network
- ICMPv6 much more detailed/precise in types and functions
- RFC 4890 has excellent filtering practices
Security
Most issues much the same as IPv4

Misconfiguration more likely than malice

Untested code and lack of experience

Security vendor claims must be validated
Security improvement claims

- Subnet size makes brute force scanning pointless (if you really use it...)
 - Privacy addresses
 - IPSec
Security realities

- Bad host numbering schemes

- IPSEC:
 - Good news: just like IPv4
 - Bad news: just like IPv4
 - Exception: Microsoft DirectAccess…
Security homework

- Test all your firewall and security appliances for IPv6
 - ACLs for IPv6
 - Detect various tunneling (ISATAP, Teredo, 6in4, 6to4, etc)

- Make sure all your NMS and logging deal with IPv6, both for transport and data
Thanks!