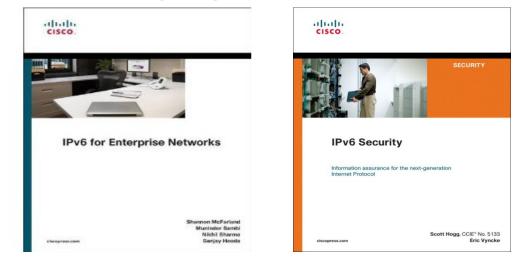
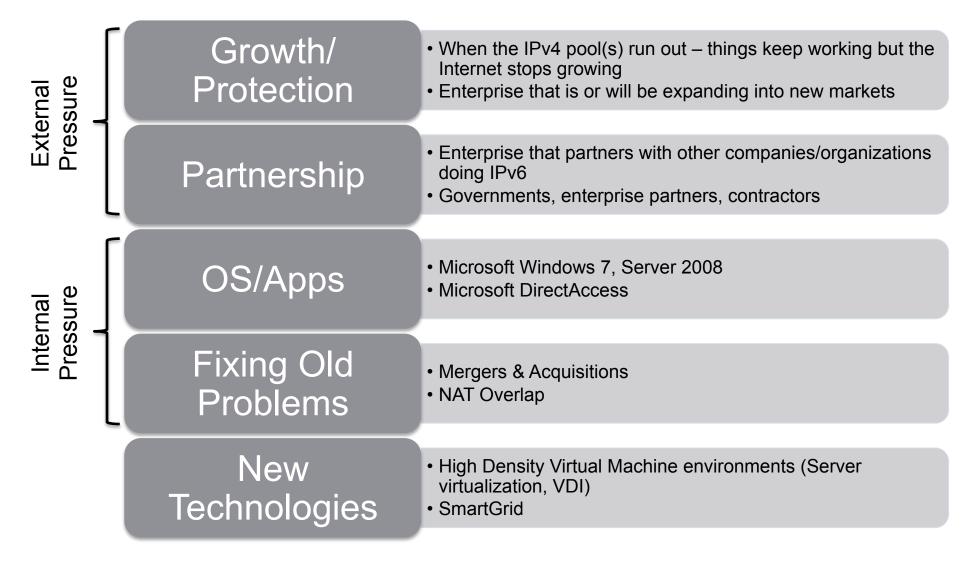

··II··II·· CISCO

Enterprise IPv6 Internet Edge Design



Shannon McFarland CCIE# 5245 Principal Engineer Corporate Consulting Engineering Research and Advanced Development

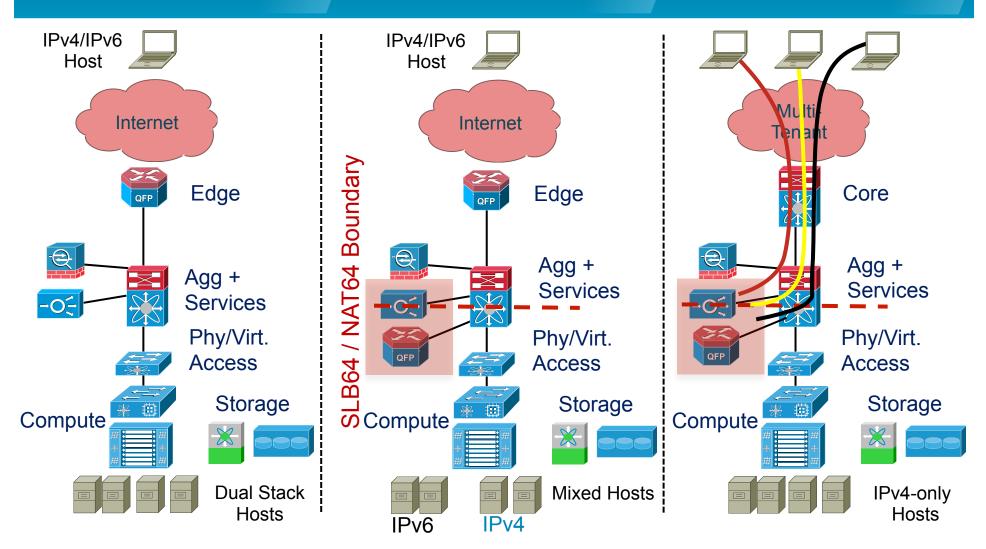

resentation_ID © 2012 Cisco Systems, Inc. All rights reserved. Cisco Public

Reference Materials

- Deploying IPv6 in the Internet Edge: <u>http://www.cisco.com/en/US/docs/solutions/Enterprise/</u> Borderless_Networks/Internet_Edge/InternetEdgeIPv6.html
- Deploying IPv6 in Campus Networks: <u>http://www.cisco.com/en/US/docs/solutions/Enterprise/Campus/</u> <u>CampIPv6.html</u>
- Deploying IPv6 in Branch Networks: <u>http://www.cisco.com/en/US/solutions/ns340/ns414/ns742/ns816/</u> landing_br_ipv6.html
- New/Updated IPv6 Cisco Sites: <u>http://www.cisco.com/go/ipv6 http://www.cisco.gom/go/entipv6</u>

Enterprises Responding to Pressure

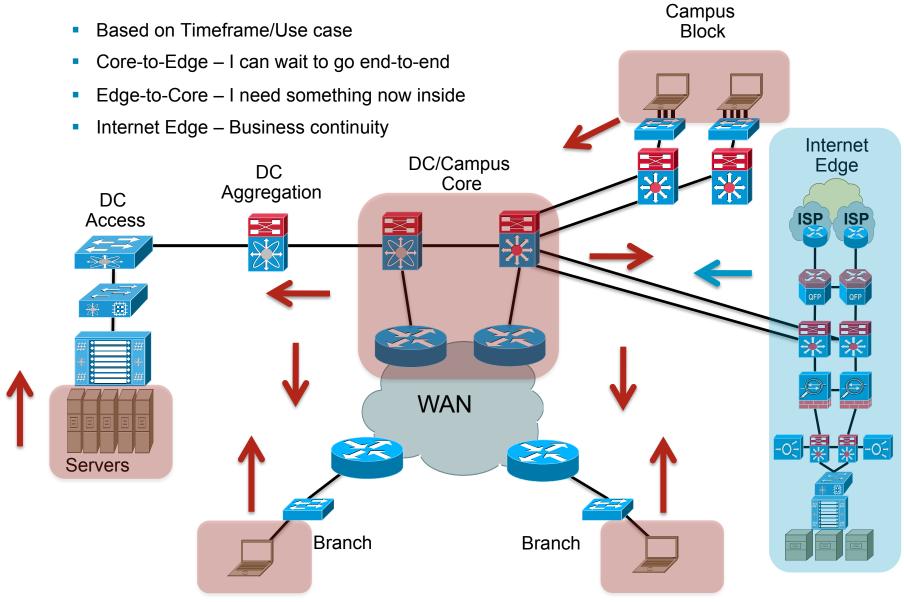
Requirements for any IPv6 Deployment Strategy


- Should be low-cost
- Must be low-risk
- Must co-exist with existing IPv4 infrastructure
- Must allow access to public Internet
- Must be incrementally deployable
- Must understand the cost of adding a new service
- Must not impact existing services
- End-user should not know the integration occurred (seamless)

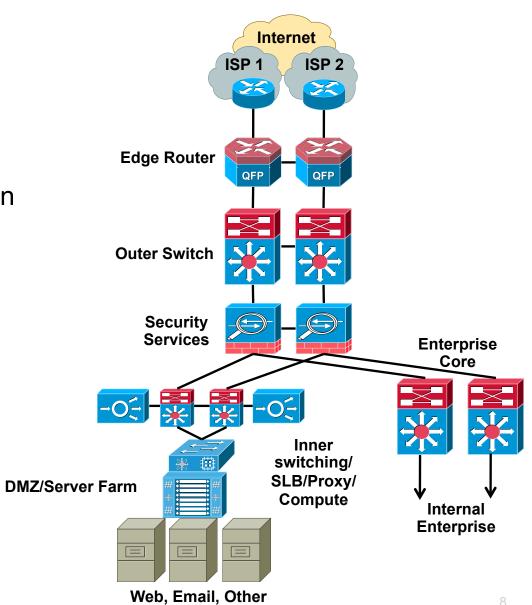
Common Deployment Models for Internet Edge

Pure Dual Stack

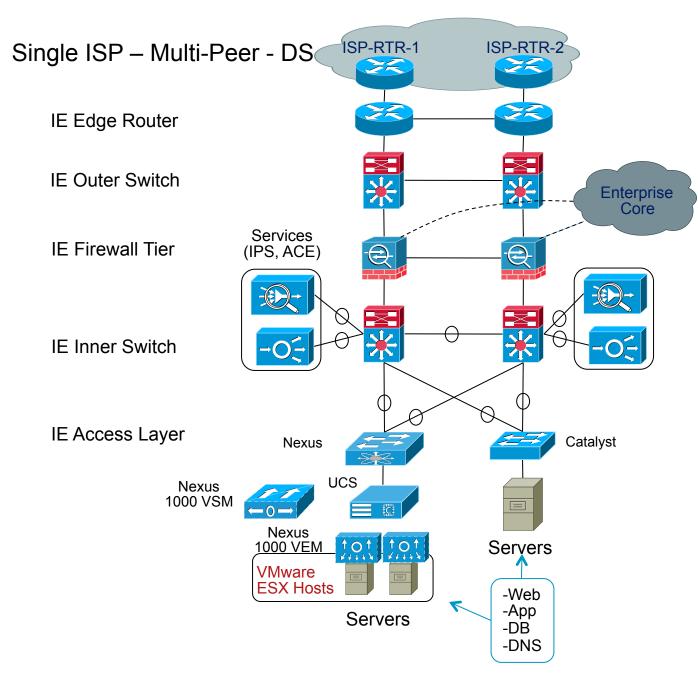
Conditional Dual Stack


Translation as a Service

Global Addressing Dilemma


- Today, many do NAT44 and 'hide' their RFC1918 space allowing for easier multi-homing scenarios
- One Provider Independent (PI) prefix for all regions or a PI per region?
- NPTv6 Translating your prefix for the sake of multi-homing RFC6296 – IPv6-to-IPv6 Network Prefix Translation Make sure you understand the "Prefix" part well and what it really does Internal PI, PA, ULA STUN, TURN, ICE will all be used like with IPv4
- http://tools.ietf.org/html/draft-ietf-v6ops-ipv6-multihoming-without-ipv6nat

Three Speeds of Enterprise Deployment

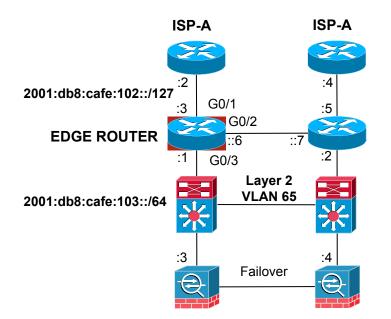

Pick one and go

- Dual stack it all
- Dual stack as much as you can and translate
- LISP (Locator/ID Separation) Protocol)
- What if your junk is in the Cloud?

Multi-Homed – Dual Stack

- Single ISP or multi-ISP changes BGP slightly
- PA vs. PI vs. NPTv6
- Behind the edge it all stays the same

Routing at the Edge

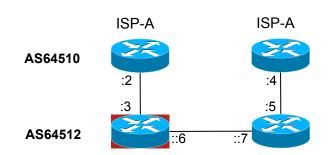

- Many, many different peering, HA and routing scenarios eBGP to single ISP or multiple ISPs
 IGP internally between edge routers and ASA or L3 switch
 Equal cost routing or primary/secondary with FHRP
 Dynamic or static
 Etc...
- Our scenario is:

eBGP peering to single ISP but different ISP routers iBGP between edge routers for re-routing during link failures HSRP on edge-to-ASA links Primary/Secondary routing preference with BGP Inject default route from ISP

Services and Applications

- SLB66 on Cisco ACE One arm mode
- Cisco ASA in A/A or A/S Failover over IPv4 OR IPv6
- Cisco IPS/IDS are inline between ASA and inner switches
- Baremetal servers on Catalyst or Nexus and UCS C-Series
- Virtualized on Nexus 5000, Nexus 1000v and UCS C-Series or other combo

Edge Peering


- Basic IP/Interface of left edge router
- /127s used on P2P
- /64 on shared links

interface GigabitEthernet0/2
description LINK to 7206-2-edge
ipv6 address 2001:DB8:CAFE:102::6/127
no ipv6 redirects

L

interface GigabitEthernet0/3
description to ASA
ipv6 address 2001:DB8:CAFE:103::1/64
no ipv6 redirects
standby version 2
standby 2 ipv6 autoconfig
standby 2 priority 110
standby 2 preempt delay minimum 300 reload 300
standby 2 authentication CISCO
standby 2 track GigabitEthernet0/1 20
!
ipv6 route 2001:DB8:CAFE::/48 2001:DB8:CAFE:103::3

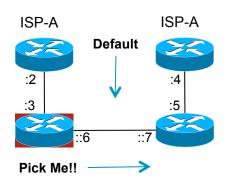
BGP - Edge Router

- eBGP to ISP
- iBGP to local edge router
- 'no bgp default ipv4unicast' allows for multi-AF neighbor activation

```
router bgp 64512
bgp router-id 192.168.1.33
no bgp default ipv4-unicast
bgp log-neighbor-changes
neighbor 2001:DB8:CAFE:102::2 remote-as 64510
neighbor 2001:DB8:CAFE:102::2 description IPv6 PEER ISP
neighbor 2001:DB8:CAFE:102::2 password CISCO
 neighbor 2001:DB8:CAFE:102::7 remote-as 64512
neighbor 2001:DB8:CAFE:102::7 description EDGE RTR 2
neighbor 2001:DB8:CAFE:102::7 password CISCO
address-family ipv4
 exit-address-family
 I
 address-family ipv6
  neighbor 2001:DB8:CAFE:102::2 activate
 neighbor 2001:DB8:CAFE:102::7 activate
 neighbor 2001:DB8:CAFE:102::7 next-hop-self
 network 2001:DB8:CAFE::/48
 no synchronization
 exit-address-family
```

BGP Filters

address-family ipv6


exit-address-family

route-map LOCAL permit 10

set local-preference 200

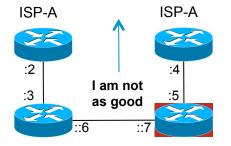
I.

!

- Accepting default only
- Setting higher local pref
- ACLs for BGP

```
I.
ipv6 access-list BGP
permit tcp host 2001:DB8:CAFE:102::3 host 2001:DB8:CAFE:102::2 eq bqp
deny tcp any any eq bgp
permit ipv6 any any
I.
ipv6 access-list IBGP
permit tcp host 2001:DB8:CAFE:102::6 host 2001:DB8:CAFE:102::7 eq bgp
deny tcp any any eq bqp
permit ipv6 any any
!
interface GigabitEthernet0/1
ipv6 traffic-filter BGP in
I
interface GigabitEthernet0/2
ipv6 traffic-filter IBGP in
```

neighbor 2001:DB8:CAFE:102::2 prefix-list v6Default-Only in


neighbor 2001:DB8:CAFE:102::2 route-map LOCAL in

ipv6 prefix-list v6Default-Only seq 5 permit ::/0

Reference

BGP Filters - Secondary

ļ

- Accepting default only
- AS PATH Prepend
- ACLs for BGP

```
address-family ipv6
  neighbor 2001:DB8:CAFE:102::4 activate
 neighbor 2001:DB8:CAFE:102::4 prefix-list v6Default-Only in
  neighbor 2001:DB8:CAFE:102::4 route-map AS PATH PREPEND out
  neighbor 2001:DB8:CAFE:102::6 activate
  neighbor 2001:DB8:CAFE:102::6 next-hop-self
 network 2001:DB8:CAFE::/48
 no synchronization
 exit-address-family
route-map AS PATH PREPEND permit 10
 set as-path prepend 64512
```

Default from ISP

Favorable

Static towards ASA

Local Pref makes IBGP peer

Routing at Edge

Primary Edge Router

- ::/0 [20/0] в via FE80::216:9CFF:FE6D:5980, GigabitEthernet0/1
- 2001:DB8:CAFE::/48 [1/0] S via 2001:DB8:CAFE:103::3

Secondary Edge Router

- ::/0 [200/0] в via 2001:DB8:CAFE:102::6
- 2001:DB8:CAFE::/48 [1/0] S via 2001:DB8:CAFE:103::3

ISP Router

.

*

ISPA-1#sh ip bgp ipv6 unicast Network Metric LocPrf Weight Path Next Hop AS Path *> 2001:DB8:CAFE::/48 Prepend 2001:DB8:CAFE:102::3 0 0 64512 i 2001:DB8:CAFE:102::5 0 0 64512 64512 i

Apply Appropriate ACLs/CoPP

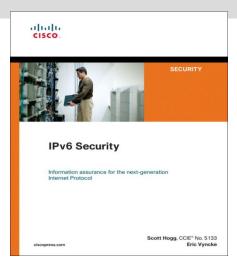
- Protect infrastructure that can be hurt by control plane processing
- HbH, RH0 (<u>http://tools.ietf.org/html/rfc5095</u>), etc ...
- Check that all networking vendors can handle /127 and/ or protect against ICMP "ping pong" attacks

```
ipv6 access-list HBH
deny hbh any any
deny ipv6 any any routing-type 0
permit icmp any any
permit ipv6 any any
```

ASA Interfaces

```
interface GigabitEthernet0/0
nameif outside
security-level 0
ipv6 address 2001:db8:cafe:103::3/64 standby 2001:db8:cafe:103::4
!
interface GigabitEthernet0/1.19
                                                                               Failover
                                                                   asa-ie-1
vlan 19
nameif WEB
security-level 50
                                                                               ids-ie-1
ipv6 address 2001:db8:cafe:115::3/64 standby 2001:db8:cafe:115::4
1
                                                                               6k-inner-1
interface GigabitEthernet0/1.22
vlan 22
nameif DNS
                                                                   VLANs on
security-level 50
                                                                     ASA or on
ipv6 address 2001:db8:cafe:118::3/64 standby 2001:db8:cafe:118::4
1
                                                                     inside switch
interface Management0/0
nameif management
                                                                   L2 or L3
security-level 100
                                                                     sandwich
ipv6 address 2001:db8:cafe:11a::10/64 standby 2001:db8:cafe:11a::11
management-only
                                                                     does not
!
                                                                     impact much
ipv6 route outside ::/0 fe80::5:73ff:fea0:2
```

ASA HA/Failover

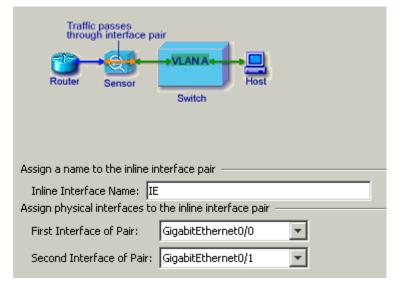

- Configuring Failover on the ASA is an either/or setup
- State for both protocols will be synced over a single failover configuration (IPv4 or IPv6)

```
interface GigabitEthernet0/3
 description LAN/STATE Failover Interface
I
failover
failover lan unit primary
failover lan interface fail GigabitEthernet0/3
failover polltime unit msec 200 holdtime msec 800
failover polltime interface msec 500 holdtime 5
failover key *****
failover replication http
                                                                                       One or the
failover link fail GigabitEthernet0/3
                                                                                       other
failover interface ip fail 10.140.3.1 255.255.255.252 standby 10.140.3.2
monitor-interface WEB
monitor-interface DNS
failover interface ip fail 2001:db8:cafe:fa11::2/127 standby 2001:db8:cafe:fa11::3
```

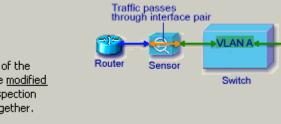
ASA Object/ACL Configuration

```
object network IE-V6-WEB-VIP
host 2001:db8:cafe:115::a
description ACE IPv6 VIP address for Web Farm
object network ie-v6-dns
host 2001:db8:cafe:118::a
object-group protocol TCPUDP
protocol-object udp
protocol-object tcp
!
ipv6 access-list outside_access_ipv6_in permit object-group TCPUDP any object ie-v6-dns eq domain
ipv6 access-list outside_access_ipv6_in permit tcp any object IE-V6-WEB-VIP eq www
!
access-group outside_access_ipv6_in in interface outside
```

- Object for ACE VIP
- Object for DNS
- ACL for L3/L4 stuff


ASA Device Manager	•
Cisco ASDM-IDM Launcher	http server enable http 2001:db8:cafe::/48 management
Device IP Address / Name: 2001:db8:cafe:11a::10 Username: cisco Password: Run in Demo Mode OK Close $\widehat{\}$	

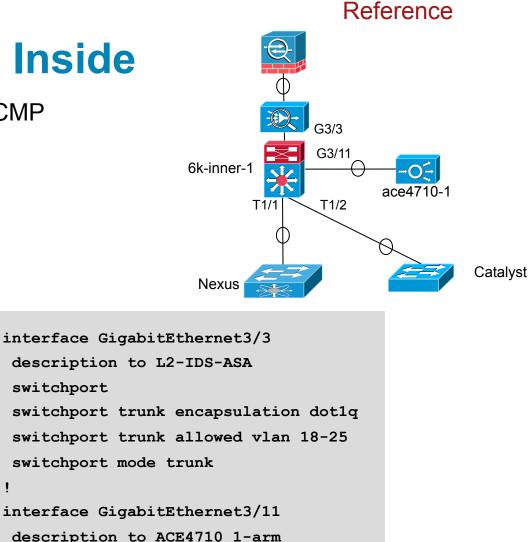
	#	Enabled	Source	User	Destination	Service	Action	
E	🛱 🥦 outside IPv6 (2 incoming rules)							
	1	▼	🏈 any		🚇 ie-v6-dns	🔛 domain	🖌 Permit	
	2	◄	🌍 any		🖳 IE-V6-WEB-VIP	🚥 http	🖌 Permit	
Ē	😑 📭 Global IPv6 (1 implicit rule)							
	1		🏈 any		🏟 any	IP ip	😣 Deny	


IDS/IPS

• Inline Interface Pair Mode

In inline mode, the sensor is in the data path of the inspected packets. Inspected packets may be <u>modified</u> <u>or dropped</u> by the sensor. Inline interface inspection requires 2 physical interfaces to be paired together.

Severity	Date	Time	Device	Sig. Name	Sig. ID	Attacker IP	Victim IP	Vicitm	Threa
high	09/27/2011	12:24:02	ids-ie-1	WWW WinNT cmd.exe Access	5081/0	172.16.99.100	10.140.19.10	80	90
high	09/27/2011	12:24:42	ids-ie-1	WWW WinNT cmd.exe Access	5081/0	2001:db8:ea5e:1:b878:ef18:e055:6476	2001:db8:cafe:115:0:0:0:a	80	90
high	09/27/2011	12:24:44	ids-ie-1	WWW WinNT cmd.exe Access	5081/0	2001:db8:ea5e:1:b878:ef18:e055:6476	2001:db8:cafe:115:0:0:0:a	80	90



Host

Connecting the Inside

- L2 or L3 Pick your HA/ECMP design
- It is no different than IPv4

```
interface TenGigabitEthernet1/1
 description to Nexus Access Layer
 switchport
 switchport trunk encapsulation dotlq
 switchport trunk allowed vlan 18-25
 switchport mode trunk
 switchport nonegotiate
                                         switchport
 spanning-tree guard root
I
interface TenGigabitEthernet1/2
 description to Catalyst Access Layer
                                         I.
 switchport
 switchport trunk encapsulation dotlg
 switchport trunk allowed vlan 18-25
                                         switchport
 switchport mode trunk
                                         switchport trunk encapsulation dotlg
 switchport nonegotiate
                                         switchport trunk allowed vlan 19,24
 spanning-tree guard root
                                         switchport mode trunk
```


Cisco ACE – Context Definition

Trunked Interface – One-arm Mode

```
interface port-channel 1
  description to IE-Trunk
  switchport trunk allowed vlan 19-22,24,132
  no shutdown
```

VLAN for Management

interface vlan 24 ipv6 enable ip address 2001:db8:cafe:11a::b/64 alias 2001:db8:cafe:11a::d/64 peer ip address 2001:db8:cafe:11a::c/64 access-group input ALL service-policy input remote_mgmt_allow_policy no shutdown

This will bring on the Mayan prediction if left off

Define Context

context IE-WEB

allocate-interface vlan 19

Cisco ACE – Fault Tolerance (over IPv4)

FT Interface over IPv4 on A5(1.0)

ft interface vlan 132
 ip address 10.140.132.1 255.255.255.0
 peer ip address 10.140.132.2 255.255.255.0
 no shutdown

ft peer 1

heartbeat interval 300 heartbeat count 10 ft-interface vlan 132 query-interface vlan 19 ft group 2 peer 1 priority 110 associate-context IE-WEB inservice

IE-WEB Context - MGMT

Reference

class-map type management match-any MGMT-CM

- 2 match protocol xml-https any
- 3 match protocol https any
- 4 match protocol ssh any
- 5 match protocol snmp any
- 6 match protocol icmp any
- 7 match protocol http any
- 8 match protocol telnet any

class-map type management match-any MGMT-CM-v6

2 match protocol icmpv6 anyv6

```
policy-map type management first-match MGMT
class MGMT-CM
    permit
    class MGMT-CM-v6
    permit
interface vlan 19
    service-policy input MGMT
```

IP Access through the Cisco ACE

access-list EVERYONE line 10 extended permit icmp any any access-list EVERYONE line 20 extended permit ip any any access-list EVERYONE-v6 line 8 extended permit icmpv6 anyv6 anyv6 access-list EVERYONE-v6 line 16 extended permit ip anyv6 anyv6 interface vlan 19 access-group input EVERYONE

IE-WEB SLB66 Context Specific Configurations

```
probe http WEB_V6_PROBE
interval 15
passdetect interval 5
request method get url /probe.html
expect status 200 200
open 1
```

```
rserver host WEB_V6_1
ip address 2001:db8:cafe:115::10
inservice
rserver host WEB_V6_2
ip address 2001:db8:cafe:115::11
inservice
serverfarm host WEB_V6_SF
predictor leastconns slowstart 300
probe WEB_V6_PROBE
rserver WEB_V6_1 80
inservice
rserver WEB_V6_2 80
inservice
```

class-map match-all WEB V6 VIP 2 match virtual-address 2001:db8:cafe:115::a tcp eq www policy-map type loadbalance first-match WEB V6 SLB class class-default serverfarm WEB V6 SF insert-http x-forward header-value "%is" policy-map multi-match WEB V6 POL class WEB V6 VIP More on this later loadbalance vip inservice loadbalance policy WEB V6 SLB loadbalance vip icmp-reply active nat dynamic 1 vlan 19 interface vlan 19 Don't screw this up ipv6 enable ip address 2001:db8:cafe:115::d/64 alias 2001:db8:cafe:115::f/64 peer ip address 2001:db8:cafe:115::e/64 access-group input EVERYONE-v6 nat-pool 1 2001:db8:cafe:115::ace 2001:db8:cafe:115::ace/128 pat service-policy input MGMT service-policy input WEB V6 POL ip route ::/0 2001:db8:cafe:115::3

SSL Offload

class-map match-all WEB V6 VIP

2 match virtual-address 2001:db8:cafe:115::a tcp eq https

ssl-proxy service SSL_PROXY_WEB

key cisco-sample-key

cert cisco-sample-cert

policy-map multi-match WEB_V6_POL class WEB_V6_VIP loadbalance vip inservice loadbalance policy WEB_V6_SLB loadbalance vip icmp-reply active nat dynamic 1 vlan 19 ssl-proxy server SSL PROXY WEB

Health Monitoring (Probes) - HTTP

ce4710-1/IE-W	EB# show	probe						
probe :	WEB_V6_P	PROBE						
type :	HTTP							
state :	ACTIVE							
port :	80	address :	0.0	.0.0				
addr type :	-	interval :	15	pass	intvl	: 5		
pass count.	3	fail count:	2	recv	timeou	t: 10		
pass count.	5	Tarr count.	5	1001	01mc0u	00		
pubb count.		prob					-	
-			e re	sults			- passed	health
-		prob	pe re: port	sults porttype	probes	failed	-	
-	 s ip-	address	pe re: port	sults porttype	probes	failed	-	
association	.s ip- : WEB_V6	address SF	pe re: port	sults porttype	probes	failed	-	
association serverfarm	 is ip- : WEB_V6 : WEB_V6	address SF	port	sults porttype +	 probes +	failed	+	
association serverfarm	 is ip- : WEB_V6 : WEB_V6	address SF 5_1[80] 188:cafe:115::10	port	sults porttype +	 probes +	failed	+	+

Application Networking Manager 5.1

- Full Monitoring
- Configure all elements of policies
- Configure by context, filter by multiple conditions, etc..

Monitor > Devices > Load Balancing > Real Servers										e i				
Real Servers (Last Polled: 27-Oct-2011 17:42:22)											T			
	Real Server	TP Ac	ldress	Port	Server Farm	Admin Status	Operational Statu	s VM	Weight	Locality	Current Conns	Conns/Sec	Dropped	Conns/Sec
Go					WEB_V6_SF									
1	WEB V6 1	2001:d	b8:cafe:115::10	80	WEB_V6_SF	Inservice	Inservice	-	8	Not Supported	0	0	0	
2	□ <u>WEB V6 2</u>	2001:d	b8:cafe:115::11	80	WEB_V6_SF	Inservice	⊗Probe failed	-	8	Not Supported	0	0	0	
Co	nfig > Devices >	• Networl	< > NAT Pools	:								ace-4710-1	1:IE-WEB	-
TAV	Pools										+ 🗹 9	🕎 🖬	P	Filter
	🛨 💡 VLAN I	D 🔻	PNAT Poo	IID	💡 Star	: IP Address	End IP A	ddress		Netmas	k Or Prefix Lengt	h	PAT Enab	led
	19		1		2001;db8	8:cafe:115::ace	2001:db8:	cafe:119	5::ace	128			V	
2	O 19		2		10.140.1	9.250	10.140.19	.250		255.255.:	255.0		V	
Co	nfig > Devices >	• Load Ba	alancing > Rea	l Serv	vers							ace-4710-1	I:IE-WEB	
Real	Servers										+ 🗹 🗄) 🕎 🖃	()	Filter
	💡 Name 👻	Type	State	0	perational Statu	s Last Pol	led De	scription	n IP A	Address	Min. Conr	nections	Max. Conne	ctions
1	WEB_V4_1	Host	In Service	InSe	ervice	2011-10-2	7 17:47:22		10.14	0.19.80				
2	O WEB_V4_2	Host	Out Of Service	Out	OfService	2011-10-2	7 17:47:22		10.14	0.19.81				
3	O WEB_V6_1	Host	In Service	InSe	ervice	2011-10-2	7 17:47:22		2001:	db8:cafe:115::1)	D			
4	C WEB_V6_2	Host	In Service	InSe	ervice	2011-10-2	7 17:47:22		2001:	db8:cafe:115::1	1			
P	resentation ID	@ 2012 (Cisco Systems, Inc.	All right	s reserved	Cisco Public								31

Access Layer Examples Your platform may vary

Nexus 5000 – We are doing basic management access

vrf context management

ipv6 route 0::/0 fe80::0005:73ff:fea0:0002 mgmt0

interface mgmt0

ipv6 address 2001:0db8:cafe:011a::0030/64

Catalyst 4900M

```
interface Vlan24
ipv6 address 2001:DB8:CAFE:11A::12/64
!
ipv6 route ::/0 Vlan24 FE80::5:73FF:FEA0:2
```

Nexus 1000v

!

interface mgmt0

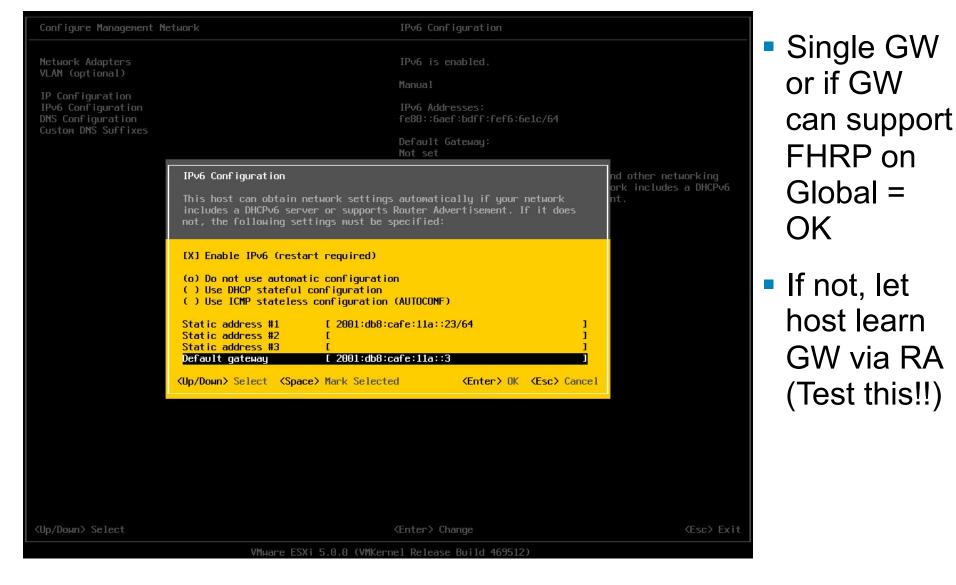
```
ipv6 address 2001:0db8:cafe:011a::0013/64
```

```
ipv6 route 0::/0 fe80::0005:73ff:fea0:0002 mgmt0
```

VMware ESXi – IPv6 (1)

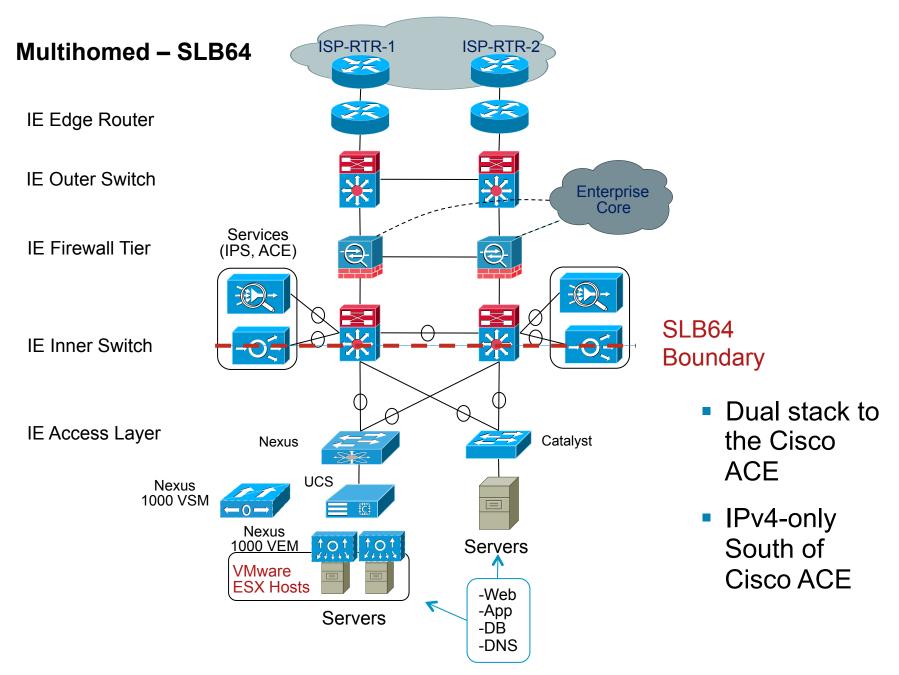
Configure Management Network Adapters VLAN (optional) IP Configuration IPv6 Configuration DNS Configuration Custom DNS Suffixes	IPv6 Configuration IPv6 is disabled. This host can be configured to support IPv6. A restart of the host will be required to enable or disable IPv6. IPv6 Configuration	 vSphere IPv6 support since 4.1
	This host can obtain network settings automatically if your network includes a DHCPv6 server or supports Router Advertisement. If it does not, the following settings must be specified: [X] Enable IPv6 (restart required) (a) Do not use automatic configuration () Use DHCP stateful configuration () Use ICMP stateless configuration (AUTOCONF) Static address #1 [1 Static address #2 [1]	 Static or dynamically assigned addresses
	Static address #3 I 1 Default gateway I 1 (Up/Down> Select (Space> Mark Selected (Enter> OK (Esc> Cancel)	 Can restart mgmt, but should reboot host
<up down=""> Select</up>	<enter> Change (Esc> Exit کالست (Mware ESXi 5.0.0 (VMKernel Release Build 469512)</enter>	

VMware ESXi – IPv6 (2)


Configure Management Net	tuork	IPv6 Configuration	
Network Adapters VLAN (optional) IP Configuration IPv6 Configuration DNS Configuration Custom DNS Suffixes	IPv6 Configuration This host can obtain network setting includes a DHCPv6 server or supports not, the following settings must be s Invalid gateway address Link-local addresses are not supp (Router Advertisement. If it does specified:	nd other networking ork includes a DHCPν6 nt.
	S S	<enter≻ ok<="" td=""><td></td></enter≻>	
	Static address #3 [Default gateway [fe80::000!] 5:73ff:fea0:0002]	
	<up down=""> Select <space> Mark Select</space></up>	ed 〈Enter〉OK 〈Esc〉Cancel	
<up down=""> Select</up>		<enter> Change</enter>	<esc> Exit</esc>

 As of ESX 5 you cannot set a LL address as a gateway

VERY BAD


 Global or let it learn via RA

VMware ESXi – IPv6 (3)

Multi-Homed – SLB64

Services and Applications Tested

- SLB64 on Cisco ACE One arm mode
- Cisco ASA in A/A or A/S Failover over IPv4 OR IPv6
- Cisco IPS/IDS
- In my setup everything south of ACE is IPv4-only

Cisco ACE – Context Definition

Trunked Interface – One-arm Mode

interface port-channel 1
 description to IE-Trunk
 switchport trunk allowed vlan 19-22,24,132
 no shutdown

VLAN for Management

```
interface vlan 24
    ipv6 enable
    ip address 2001:db8:cafe:11a::b/64
    alias 2001:db8:cafe:11a::d/64
    peer ip address 2001:db8:cafe:11a::c/64
    access-group input ALL
    service-policy input remote_mgmt_allow_policy
    no shutdown
```

Define Context

context IE-WEB

allocate-interface vlan 19

 Nothing changes from previous
 SLB66 example

SLB64 Context Specific Configurations

```
probe http WEB_V4_PROBE
interval 15
passdetect interval 5
request method get url /probe.html
expect status 200 200
open 1
```

```
rserver host WEB_V4_1
ip address 10.140.19.80
inservice
rserver host WEB_V4_2
ip address 10.140.19.81
inservice
serverfarm host WEB_V6_V4_SF
predictor leastconns slowstart 300
probe WEB_V4_PROBE
rserver WEB_V4_1 80
inservice
rserver WEB_V4_2 80
inservice
```

class-map match-all WEB V6 V4 VIP 2 match virtual-address 2001:db8:cafe:115::a tcp eq www policy-map type loadbalance first-match WEB V6 V4 SLB class class-default serverfarm WEB V6 V4 SF nat dynamic 2 vlan 19 serverfarm primary insert-http x-forward header-value "%is" policy-map multi-match WEB V6 V4 POL class WEB V6 V4 VIP loadbalance vip inservice loadbalance policy WEB V6 V4 SLB loadbalance vip icmp-reply active interface vlan 19 ipv6 enable ip address 2001:db8:cafe:115::d/64 ip address 10.140.19.13 255.255.255.0 access-group input EVERYONE access-group input EVERYONE-v6 nat-pool 2 10.140.19.250 10.140.19.250 netmask 255.255.255.0 pat service-policy input MGMT service-policy input WEB V6 V4 POL

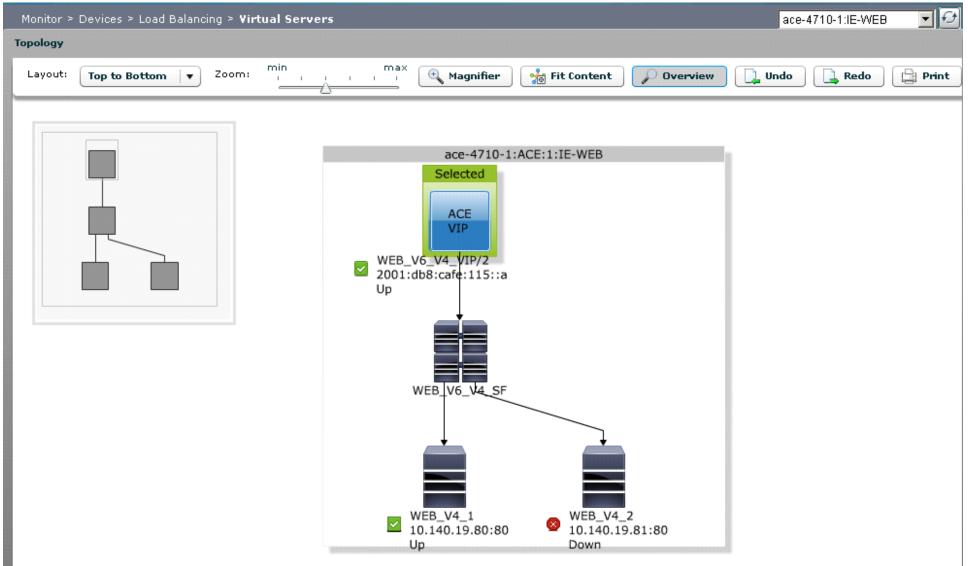
Reference

SSL Offload

class-map match-all WEB_V6_VIP
2 match virtual-address 2001:db8:cafe:115::a tcp eq https

ssl-proxy service SSL_PROXY_WEB
key cisco-sample-key
cert cisco-sample-cert

policy-map multi-match WEB_V6_POL class WEB_V6_VIP loadbalance vip inservice loadbalance policy WEB_V6_SLB loadbalance vip icmp-reply active nat dynamic 1 vlan 19 ssl-proxy server SSL PROXY WEB Nothing changes from previous SLB66 example


'North' bound
 VIP is still
 IPv6

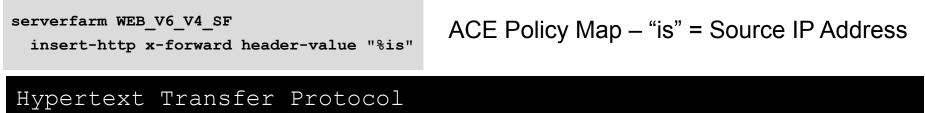
Reference

Health Monitoring (Probes) - IPv4 Real Servers

ace-4710-1/IE-WEB# sh probe probe : WEB V4 PROBE type : HTTP state : ACTIVE ______ port : 80 address : 0.0.0.0 addr type : - interval : 15 pass intvl : 5 pass count: 3 fail count: 3 recv timeout: 10 ----- probe results -----associations ip-address port porttype probes failed passed health _____+ serverfarm : WEB V6 V4 SF real : WEB V4 1[80] 10.140.19.80 80 REAL 32 32 0 SUCCESS real : WEB V4 2[80] 10.140.19.81 80 REAL 32 0 32 SUCCESS

Application Networking Manager 5.1

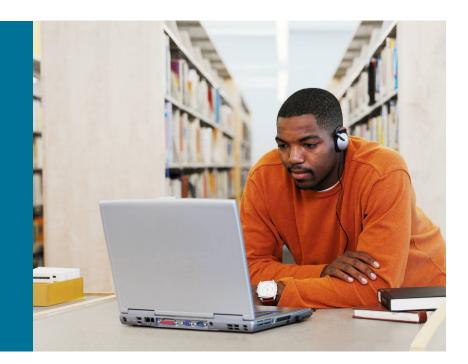
Validation of Connection

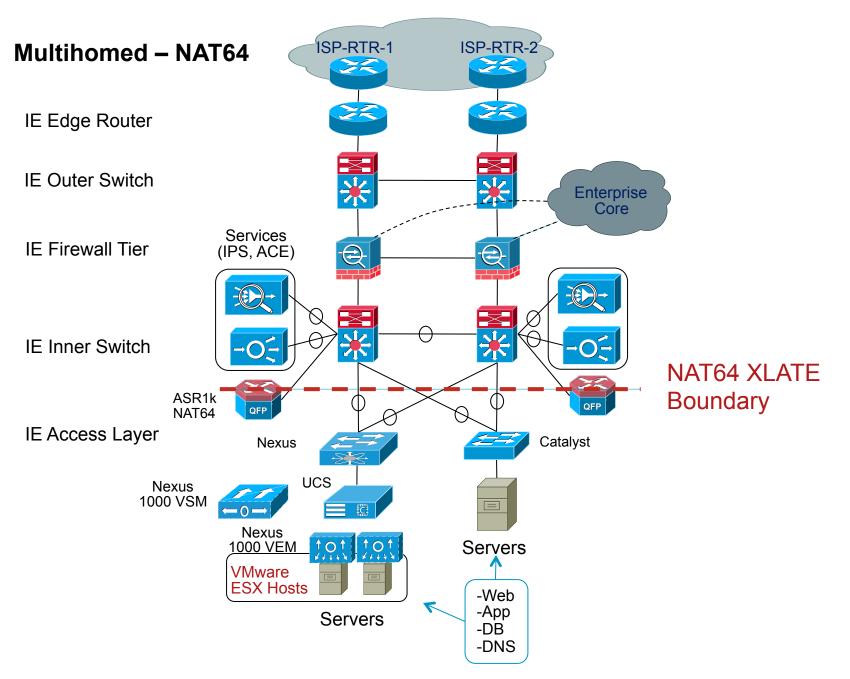

ace-4710-1,	e-4710-1/IE-WEB# show conn						
conn-id	np	dir	proto	source	sport	state	
			vlan	destination	dport		
1640630	+	⊦4 in		2001:db8:ea5e:1:49fa:b11a:aaf8:91a5		+ ESTAB	Client-2-VIP
			19	2001:db8:cafe:115::a	80		
1647396	1	out	TCP 19	10.140.19.80 10.140.19.250	80 1025	ESTAB	Svr-2-SNAT

- First connection pair are IPv6 and between client and VIP
- Second connection pair are IPv4 and between SNAT address (we are in one arm mode) and real server

X-Forwarded-For

- By default the source IP of client requests that are logged will be the SNAT or other NAT'ed address
- You want to log the real source address X-Forwarded-For (XFF) in HTTP
- Make changes to Apache LogFormat/CustomLog to get full use of XFF


cisco@ie-web-01:/\$ tail -f /var/log/apache2/access.log 10.140.19.250 - - [25/Oct/2011:11:41:03 -0600] "GET / HTTP/1.1" 304 210 "-" "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; Trident/ 4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C)"



GET / HTTP/1.1\r\n

x-forward: 2001:db8:ea5e:1:49fa:b11a:aaf8:91a5\r\n

Multi-Homed – Stateful NAT64

Services and Applications

- Reasons for Stateful NAT64 vs. SLB64:
 - Applications don't need SLB
 - SLB can't do SLB64
 - You want to do translation closer to edge router (or on it)
- Cisco ASA in A/A or A/S Failover over IPv4 OR IPv6
- Cisco IPS/IDS
- Cisco ASR 1k is doing Stateful NAT64
- Everything South of ASR is IPv4-only
- You don't need DNS64 unless you are coming from IPv6-only to IPv4-only – Dual stacked clients can get DNS from IPv4 or IPv6enabled DNS servers

Reference

NAT64

Lots of RFCs to check out:

RFC 6144 – Framework for IPv4/IPv6 Translation

RFC 6052 – IPv6 Addressing of IPv4/IPv6 Translators

RFC 6145 – IP/ICMP Translation Algorithm

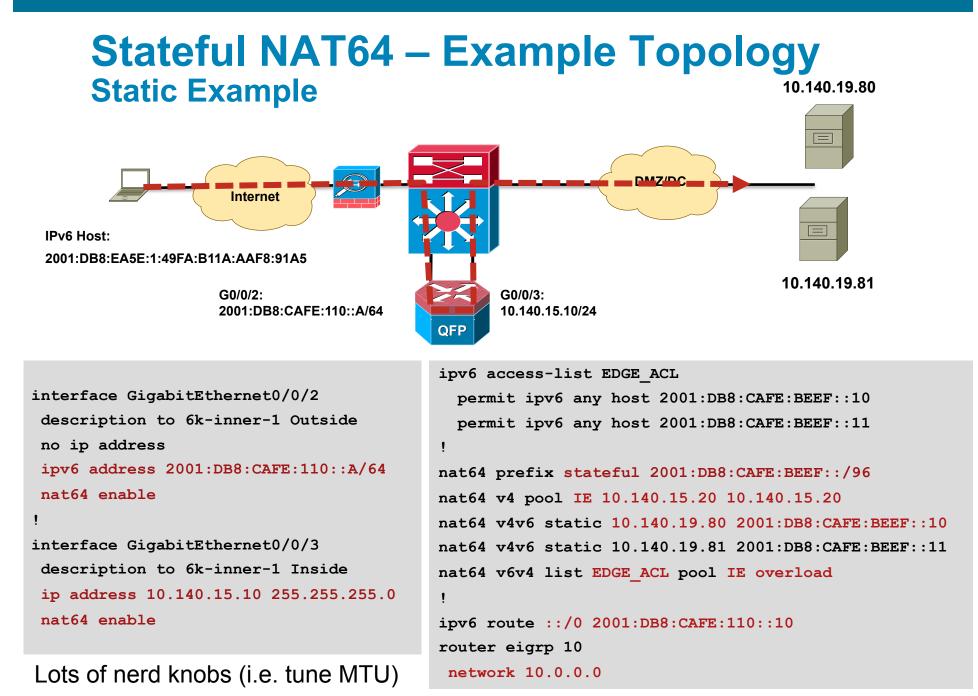
RFC 6146 – Stateful NAT64

RFC 6147 – DNS64

Stateless – Not your friend in the enterprise (corner case deployment)

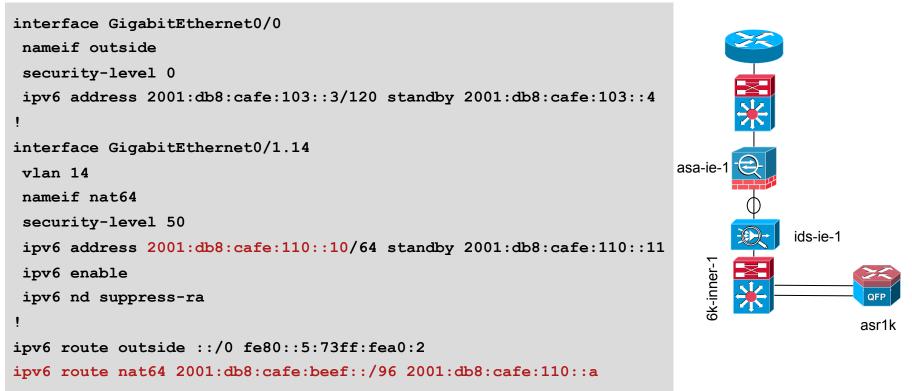
 1:1 mapping between IPv6 and IPv4 addresses (i.e. 254 IPv6 hosts-to-254 IPv4 hosts)

Requires the IPv6-only hosts to use an "IPv4 translatable" address format


 Stateful – What we are after for translating IPv6-only hosts to IPv4-only host(s)

It is what it sounds like – keeps state between translated hosts

Several deployment models (PAT/Overload, Dynamic 1:1, Static, etc...)


This is what you will use to translate from IPv6 hosts (internal or Internet) to IPv4only servers (internal DC or Internet Edge)

New Cisco WP: <u>http://bit.ly/poyOey</u>

Presentation ID

ASA Interfaces

- Many connectivity types Here, ASR is in VLAN14 that is trunked via 6k pair to the ASA pair
- If doing pure L3 P2P links to 6k then use IPv6 EIGRP to announce NAT64 prefix – here we have to do static route until ASA supports EIGRPv6 or OSPFv3

Reference

ASA Object/ACL Configuration

```
object network NAT64-WEB-01
host 2001:db8:cafe:beef::10
object network NAT64-WEB-02
host 2001:db8:cafe:beef::11
!
ipv6 access-list outside_access_ipv6_in permit tcp any object NAT64-WEB-01 eq www
ipv6 access-list outside_access_ipv6_in permit tcp any object NAT64-WEB-02 eq www
!
access-group outside access ipv6 in in interface outside
```

- External references are to the static NAT64 addresses from the "NAT64 Prefix"
- Object for each server
- ACL for L3/L4 stuff

NAT64 Translations

asr1k#	show nat64 translatior	ns	
Proto	Original IPv4 Translated IPv6	Translated IPv4 Original IPv6	
	10.140.19.81 10.140.19.80	2001:db8:cafe:beef::11 2001:db8:cafe:beef::10	Static Entries
tcp	 10.140.19.80:80 10.140.15.20:1024	 [2001:db8:cafe:beef::10]:80 [2001:db8:ea5e:1:49fa:b11a:aaf8:91a5]:57316	Dynamic Overloaded Entries
	NAT64 Source NAT address	Outside Client Source Address	

NAT64 Statistics

```
asr1k#sh nat64 statistics
Interface Statistics
GigabitEthernet0/0/2 (IPv4 not configured, IPv6 configured):
      Packets translated (IPv4 -> IPv6)
         Stateless: 0
         Stateful: 0
      Packets translated (IPv6 -> IPv4)
         Stateless: 0
         Stateful: 3
      Packets dropped: 0
  GigabitEthernet0/0/3 (IPv4 configured, IPv6 not configured):
      Packets translated (IPv4 -> IPv6)
         Stateless: 0
         Stateful: 3
      Packets translated (IPv6 -> IPv4)
         Stateless: 0
         Stateful: 0
      Packets dropped: 0
Dynamic Mapping Statistics
   v6v4
      access-list EDGE ACL pool IE refcount 1
         pool IE:
            start 10.140.15.20 end 10.140.15.20
            total addresses 1, allocated 1 (100%)
            address exhaustion packet count 0
Limit Statistics
```

Reference

*Output reduced for clarity

NetFlow Export of Original Source IP

- In ACE example we used "x-forwarded-for" insertion to get original source IPv6 address
- With ASR1k we can use NetFlow to export original IPv6 Source address (flow record "ipv6 original-input)
- You can export via IPv4 or IPv6 to your favorite collector
- This is not a suitable replacement for xforwarded-for as most of your existing back-end tools are not setup for NetFlow analysis

NetFlow Record IPv6 Original-Input Reference

asr1k#show flow record netflow ipv6 original-input flow record netflow ipv6 original-input: Description: Traditional IPv6 input NetFlow with ASs No. of users: 0 Total field space: 97 bytes Fields: match ipv6 traffic-class match ipv6 flow-label match ipv6 protocol match ipv6 extension map match ipv6 source address match ipv6 destination address match transport source-port match transport destination-port match interface input match flow direction match flow sampler collect routing source as collect routing destination as collect routing next-hop address ipv6 collect ipv6 source mask collect ipv6 destination mask collect transport tcp flags collect interface output collect counter bytes collect counter packets collect timestamp sys-uptime first collect timestamp sys-uptime last

NetFlow Export Example

```
flow exporter EXPORT-IE
  destination 10.140.22.90
  transport udp 90
!
!
flow monitor NAT64
  record netflow ipv6 original-input
  exporter EXPORT-IE
  cache entries 200000
!
interface GigabitEthernet0/0/2
  description to 6k-inner-1 Outside
  ipv6 flow monitor NAT64 input
  ipv6 address 2001:DB8:CAFE:110::A/64
  nat64 enable
```

- Normal NetFlow stuff
- Create a monitor
- Create an export destination
- Assign to interface

NetFlow Export Cache Output

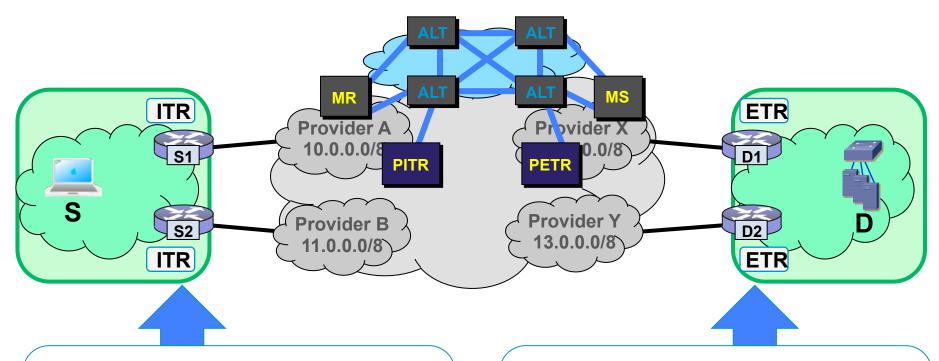
asr1k#show flow monitor NAT64 cache

IPV6 FLOW LABEL:	0
IPV6 EXTENSION MAP:	0x0000000
IPV6 SOURCE ADDRESS:	2001:DB8:EA5E:1:49FA:B11A:AAF8:91A5
IPV6 DESTINATION ADDRESS:	2001:DB8:CAFE:BEEF::10
TRNS SOURCE PORT:	57227
TRNS DESTINATION PORT:	80
INTERFACE INPUT:	Gi0/0/2
FLOW DIRECTION:	Input
FLOW SAMPLER ID:	0
IP PROTOCOL:	6
IP TOS:	0x00
ip source as:	0
ip destination as:	0
ipv6 next hop address:	::100.0.0.1
ipv6 source mask:	/0
ipv6 destination mask:	/96
tcp flags:	0x1A
interface output:	NV0
counter bytes:	661
counter packets:	4
timestamp first:	13:21:37.815
timestamp last:	13:21:38.039

Original Client Src IP Outside IPv6 static host address

*Output reduced for clarity

Using LISP to Service IPv6 Access

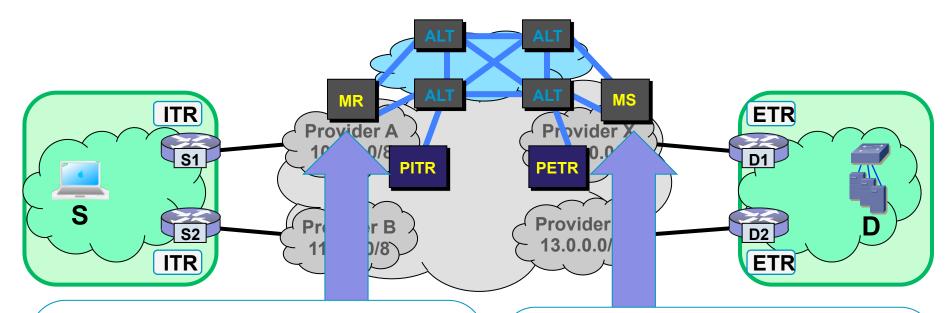

- Everything we just talked about still applies except: You are leveraging LISP as a means to deal with having non-IPv6 capable providers, gear, features or all of the above
- EXTENSIVE amount of information available
- Real customer deployments are wildly successful using LISP for IPv6 (you are probably using it and not know it)
- Sites you need to bookmark
 - http://lisp.cisco.com
 - http://www.lisp4.net http://www.lisp6.net
- The source of all goodness:

http://lisp.cisco.com/lisp_tech.html

Definitions

- ITR Ingress Tunnel Router: Receives packets from site-facing interfaces and encaps to remote LISP site or natively to non-LISP site
- ETR Egress Tunnel Router: Receives packets from core-facing interfaces and de-caps and delivers to local EIDs at site
- MR Map-Resolver: Receives Map-Requests from ITRs and forwards to authoritative Map-Server, or sends Negative-Map-Replies in response to Map-Requests for non-LISP sites
- MS Map-Server: LISP ETRs register here, injects routes for LISP sites and forwards Map-Requests to registered ETRs
- PITR Proxy ITR: Receives traffic from non-LISP sites, encapsulates traffic to LISP sites and advertises coarse-aggregate EID prefixes
- PETR Proxy ETR: Allows IPv6 LISP sites with IPv4 RLOCs to reach Non-LISP IPv6 sites

LISP Components – Ingress/Egress Tunnel Router (xTR)


ITR – Ingress Tunnel Router

- Receives packets from site-facing interfaces
- Encaps to remote LISP site or natively forwards to non-LISP site

ETR – Egress Tunnel Router

- Receives packets from core-facing interfaces
- De-caps and delivers to local EIDs at the site

LISP Components – Map-Server/Map-Resolver (MS/MR)

MR – Map-Resolver

- Receives Map-Request encapsulated from ITR
- De-caps Map-Request, forwards thru service interface onto the ALT topology
- Sends Negative Map-Replies in response to Map-Requests for non-LISP sites

MS – Map-Server

- LISP ETRs Register here; requires configured "lisp site" policy, key
- Injects routes for registered LISP sites into ALT thru ALT service interface
- Receives Map-Requests via ALT; encaps Map-Requests to registered ETRs

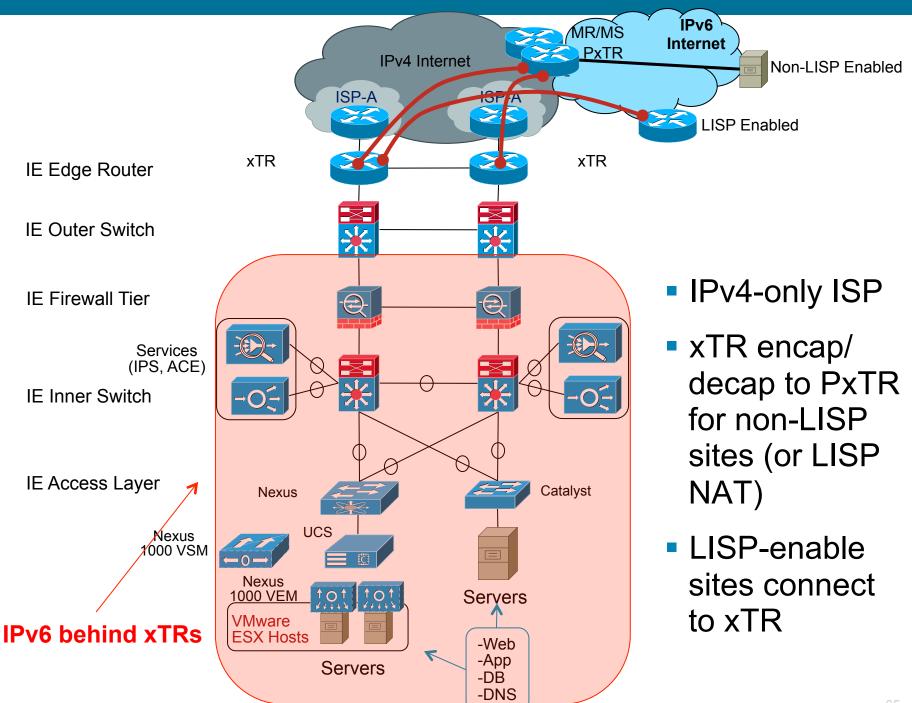
LISP Operations Interworking Mechanisms

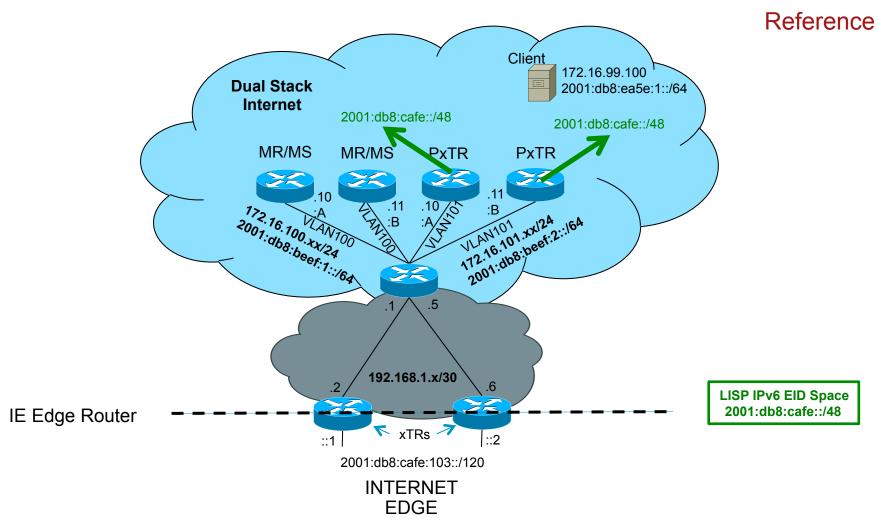
- Early Recognition LISP will not be widely deployed day-one
- Interworking for:

LISP-capable sites to non-LISP sites (i.e. the rest of the Internet)

non-LISP sites to LISP-capable sites

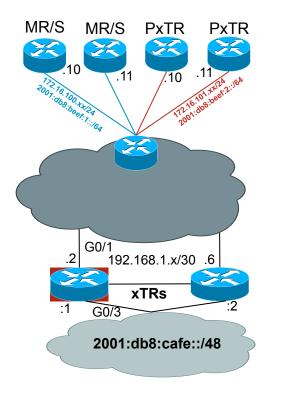
Two basic Techniques


LISP Network Address Translators (LISP-NAT)


Proxy Ingress Tunnel Routers & Proxy Egress Tunnel Routers

Proxy-ITR/Proxy-ETR have the most promise

Infrastructure LISP network entity


Creates a monetized service opportunity for infrastructure players

- Example addressing layout
- PxTR announces for 2001:db8:cafe::/48

xTR


```
interface GigabitEthernet0/1
description to ISPA (7604-1) - IPv4-ONLY
ip address 192.168.1.2 255.255.255.252
```

```
interface GigabitEthernet0/3
description to Enterprise Internet Edge IPv4/IPv6
ip address 192.168.1.66 255.255.255.224
ipv6 address 2001:DB8:CAFE:103::1/120
```

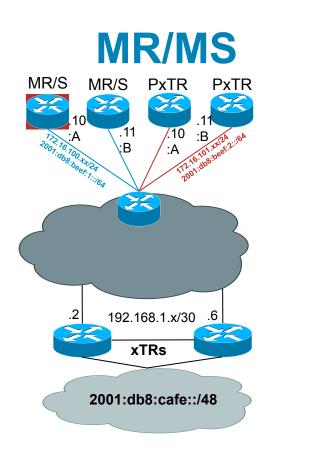
#BGP config excluded

```
router lisp
```

!

!

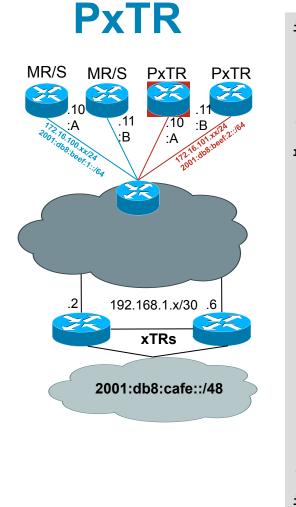
I.


eid-table default instance-id 0

database-mapping 2001:DB8:CAFE::/48 192.168.1.2 priority 1 weight 1
database-mapping 2001:DB8:CAFE::/48 192.168.1.6 priority 1 weight 1
exit

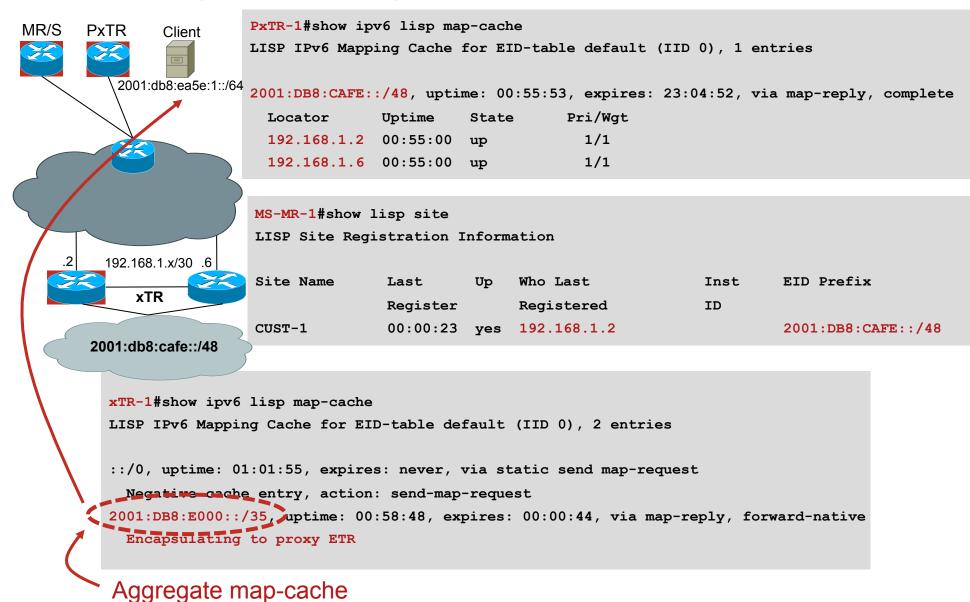
```
!
```

```
ipv6 use-petr 172.16.101.10
ipv6 use-petr 172.16.101.11
ipv6 itr map-resolver 172.16.100.10
ipv6 itr map-resolver 172.16.100.11
ipv6 itr
ipv6 etr map-server 172.16.100.10 key CISCO
ipv6 etr map-server 172.16.100.11 key CISCO
ipv6 etr
exit
!
ipv6 route ::/0 Null0
```

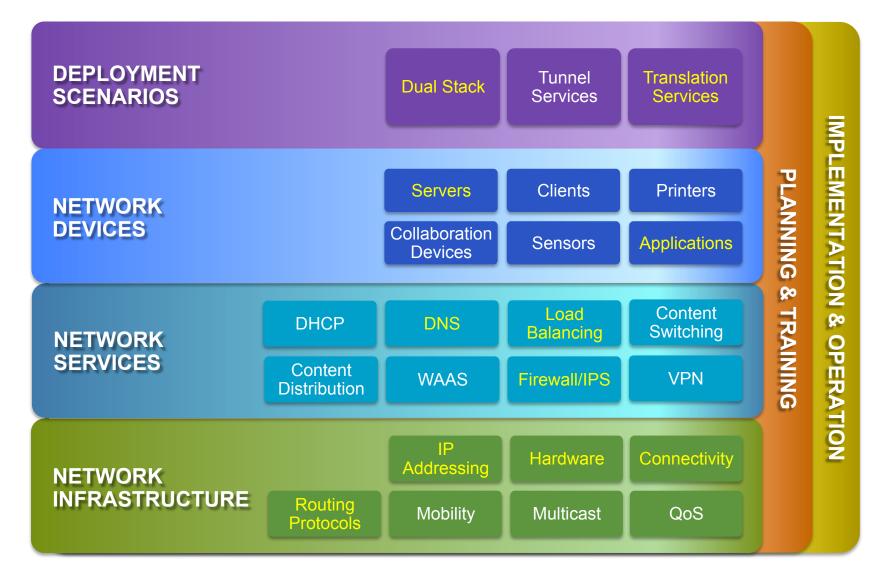

Reference


```
interface LISP0
1
interface GigabitEthernet0/0/0
description Link to SP1 (RLOC)
 ip address 172.16.100.10 255.255.255.0
ipv6 address 2001:DB8:BEEF:1::A/64
I
router lisp
 site CUST-1
 authentication-key CISCO
 eid-prefix 2001:DB8:CAFE::/48
  exit
1
 ipv6 map-server
ipv6 map-resolver
 exit
1
ip route 0.0.0.0 0.0.0.0 172.16.100.1
I
ipv6 route ::/0 2001:DB8:CAFE:1::1
```

Redundant configurations across MR/MS routers


Reference


```
interface GigabitEthernet0/0/0
description Link to Core (RLOC)
ip address 172.16.101.10 255.255.255.0
ipv6 address 2001:DB8:CAFE:2::A/64
ļ
router lisp
 eid-table default instance-id 0
 map-cache 2001:DB8:CAFE::/48 map-request
 exit
ipv6 map-request-source 2001:DB8:BEEF:2::A
ipv6 proxy-etr
ipv6 proxy-itr 2001:DB8:BEEF:2::A 172.16.101.10
ipv6 itr map-resolver 172.16.100.10
ipv6 itr map-resolver 172.16.100.11
ipv6 itr map-resolver 2001:DB8:BEEF:1::A
ipv6 itr map-resolver 2001:DB8:BEEF:1::B
exit
I
ip route 0.0.0.0 0.0.0.0 172.16.101.1
ipv6 route ::/0 2001:DB8:BEEF:2::1
```


Redundant configurations across PxTR

Putting It All Together

Areas of IPv6 Deployment in the Internet Edge – Stuff we talked about

Other Stuff

- Network Management You will manage the same kind of stuff regardless of protocol
- NetFlow, Deep Packet Inspection, etc..
- Email, DNS, other apps
- More comprehensive security recommendations
 - Blocking routing type 0
 - uRPF different capabilities based on platform
 - no ipv6 source-route not on by default prior to 12.4(15)T
 - Normal bogon filters
 - Basically, all usual IPv4 stuff plus platform/code specific CLI or security-focused differences

Pick up copy of "IPv6 Security" by Eric Vyncke and Scott Hogg

NPTv6 for single address space multi-homing configurations

http://tools.ietf.org/html/draft-ietf-v6ops-ipv6-multihoming-without-ipv6nat

Conclusion

- "Dual stack where you can Tunnel where you must Translate when you have a gun to your head" – It's fun to say, but just not as practical as it used to be
- Don't shortcut your Internet-facing deployment or it will hurt (latency, availability, security, user experience)
- There are so many options that it can be overwhelming – test and then test again
- It is all about the application and user experience