··II··II·· CISCO

Enterprise IPv6 Deployment Summary

Shannon McFarland CCIE# 5245 Corporate Consulting Engineer CE/CTO

shmcfarl@cisco.com

Presentation_ID © 2006 Cisco Systems, Inc. All rights reserved. Cisco Pu

Reference Materials

- Deploying IPv6 in Campus Networks: <u>http://www.cisco.com/en/US/docs/solutions/Enterprise/</u> <u>Campus/CampIPv6.html</u>
- Deploying IPv6 in Branch Networks: <u>http://www.cisco.com/en/US/solutions/ns340/ns414/ns7</u> <u>42/ns816/landing br ipv6.html</u>
- CCO IPv6 Main Page: <u>http://www.cisco.com/go/ipv6</u>
- Cisco Network Designs: <u>http://www.cisco.com/go/designzone</u>

Recommended Reading

Deploying IPv6 in Broadband Networks - Adeel Ahmed, Salman Asadullah ISBN0470193387, John Wiley & Sons Publications[®]

"IPv6 Enterprise Deployment" Cisco Press Coming later this year!

Agenda

- Enterprise Adoption
- Planning and Deployment Summary
- Infrastructure Deployment
- Communicating with the Service Providers

Enterprise Adoption

Monitoring Market Drivers

Address Space Operating Systems – Applications - Emerging Markets - All major OSes support IPv6 - Public IPv4 Address Space - Microsoft W7/Server 2008 - RFC1918 Exhaustion - Microsoft DirectAccess - RFC1918 Collisions (M&A) Infrastructure National IT Strategy **Evolution** - US Federal Mandate - CNGI - DOCSIS 3, FTTH, Cloud, - European Commission Mobile SP, Sensor Networks

Planning and Deployment Summary

IPv6 Integration Outline

Pre-Deployment	Deployment
Phases	Phases
 Establish the network starting point Importance of a network assessment and available tools Defining early IPv6 security guidelines and requirements Additional IPv6 "pre- deployment" tasks needing consideration 	 Transport considerations for integration Campus IPv6 integration options WAN IPv6 integration options Advanced IPv6 services options

Integration/Coexistence Starting Points Example: Integration Demarc/Start Points in Campus/WAN

Pre-Deployment Checklist

Other Critical Network Planning Requirements

- Establish starting point, network assessment, security guidelines
- Acquire IPv6 address block and create IPv6 addressing scheme
- Create and budget for an IPv6 lab that closely emulates all network elements (routers, switches, hosts, OS)
- ✓ Upgrade DNS server to support IPv6
- Establish network management considerations (hardware, MIBs required for v6, etc.)
- Routing and multicast protocol and selection/evaluation process (align with IPv4 choice is possible)
- Consider options for centralized ISATAP router (see campus example)
- Evaluate IPv6-capable transport services available from current Service Provider (SP)

Start Here: Cisco IOS Software Release Specifics for IPv6 Features http://www.cisco.com/univercd/cc/td/doc/product/software/ios123/123cgcr/ipv6_c/ftipv6s.htm

IPv6 Coexistence

ISATAP Tunneling (Intra-Site Automatic Tunnel Addressing Protocol) 6to4 6rd Manual Tunnels

Campus IPv6 Deployment Options Dual-Stack IPv4/IPv6

- #1 requirement—switching/ routing platforms must support hardware based forwarding for IPv6
- IPv6 is transparent on L2 switches but—

L2 multicast—MLD snooping IPv6 management— Telnet/SSH/HTTP/SNMP Intelligent IP services on WLAN

- Expect to run the same IGPs as with IPv4
- VSS supports IPv6

Campus IPv6 Deployment Options Hybrid Model

 Offers IPv6 connectivity via multiple options

Dual-stack

Configured tunnels—L3-to-L3

ISATAP—Host-to-L3

- Leverages existing network
- Offers natural progression to full dual-stack design
- May require tunneling to less-than-optimal layers (i.e. core layer)
- ISATAP creates a flat network (all hosts on same tunnel are peers)

Create tunnels per VLAN/subnet to keep same segregation as existing design (not clean today)

 Provides basic HA of ISATAP tunnels via old Anycast-RP idea

Campus IPv6 Deployment Options IPv6 Service Block—an Interim Approach

- Provides ability to rapidly deploy IPv6 services without touching existing network
- Provides tight control of where IPv6 is deployed and where the traffic flows (maintain separation of groups/locations)
- Offers the same advantages as Hybrid Model without the alteration to existing code/configurations
- Configurations are very similar to the Hybrid Model

ISATAP tunnels from PCs in access layer to service block switches (instead of core layer—Hybrid)

- 1) Leverage existing ISP block for both IPv4 and IPv6 access
- 2) Use dedicated ISP connection just for IPv6—Can use IOS FW or PIX/ASA appliance

Primary ISATAP Tunnel Secondary ISATAP Tunnel

IPv6 Data Center Integration

- The single most overlooked and potentially complicated area of IPv6 deployment
- Front-end design will be similar to campus based on feature, platform and connectivity similarities – Nexus, 6500 4900M
- IPv6 for SAN is supported in SAN-OS 3.0
- Major issue in DC with IPv6 today- NIC Teaming
- Watch status of IPv6 support from App, Grid, DB vendors, DC management

Get granular - e.g. iLO

Impact on clusters – Microsoft Server 2008 Failover clusters full support IPv6 (and L3)

Build an IPv6-only server farm?

IPv6 in the Data Center Biggest Challenges Today

Network services above L3

SLB, SSL-Offload, application monitoring (probes)

Application Optimization (WAAS)

High-speed security inspection/perimeter protection

Application support for IPv6

If an application is protocol centric (IPv4):

Needs to be rewritten

Needs to be translated until it is replaced

Wait and pressure vendors to move to protocol agnostic framework

Growing DC complexity

Virtualization should make large DCs simpler and more flexible

Lack of robust DC/Application management is often the root cause of all evil

Ensure management systems support IPv6 as well as the devices being managed

WAN/Branch Deployment

- Cisco routers have supported IPv6 for a long time
- Dual-stack should be the focus of your implementation—but, some situations still call for tunneling
- Support for every media/WAN type you want to use (Frame Relay, leased-line, broadband, MPLS, etc.)
- Don't assume all features for every technology are IPv6-enabled
- Better feature support in WAN/branch than in campus/DC

IPv6 Enabled Branch

Take Your Pick—Mix-and-Match

Dual-Stack IPSec VPN or Frame Relay IOS Firewall (IPv4/IPv6) Switches (MLD-snooping)

Remote VPN – IPv6

Microsoft DirectAccess

Communicating with the Service Provider

Top SP Concerns for Enterprise Accounts

Port-to-Port Access

Multi-Homing

PI/PA Policy Concerns	 PA is no good for customers with multiple providers or change them at any pace PI is new, constantly changing expectations and no "guarantee" an SP won't do something stupid like not route PI space Customers fear that RIR will review existing IPv4 space and want it back if they get IPv6 PI
NAT	 Religious debate about the security exposure – not a multi-homing issue If customer uses NAT like they do today to prevent address/policy exposure, where do they get the technology from – no scalable IPv6 NAT exists today
Routing	 Is it really different from what we do today with IPv4? Is this policy stuff? Guidance on prefixes per peering point, per theater, per ISP, ingress/egress rules, etc – this is largely missing today

Content

Hosted/Cloud Apps today	 IPv6 provisioning and access to hosted or cloud-based services today (existing agreements) Salesforce.com, Microsoft BPOS (Business Productivity Online Services), Amazon, Google Apps
Move to	 Movement from internal-only DC services to
Hosted/Cloud	hosted/cloud-based DC Provisioning, data/network migration services, DR/HA
Contract/Managed	 Third-party marketing, business development,
Marketing/Portals	outsourcing Existing contracts – how to offer to connect over IPv6

Provisioning

The Scope of IPv6 Deployment

28

Conclusion

- Create a virtual team of IT representatives from every area of IT to ensure coverage for OS, Apps, Network and Operations/Management
- Microsoft Windows Vista, 7 and Server 2008 will have IPv6 enabled by default—understand what impact any OS has on the network
- Deploy it at least in a lab IPv6 won't bite
- Things to consider:

Focus on what you must have in the near-term (lower your expectations) but pound your vendors and others to support your long-term goals

Don't be too late to the party – anything done in a panic is likely going to go badly

#