Enterprise IPv6 Deployment Summary

Shannon McFarland
CCIE# 5245
Corporate Consulting Engineer
CE/CTO
shmcfarl@cisco.com
Reference Materials

Recommended Reading

“IPv6 Enterprise Deployment” Cisco Press Coming later this year!
Agenda

- Enterprise Adoption
- Planning and Deployment Summary
- Infrastructure Deployment
- Communicating with the Service Providers
Enterprise Adoption
Enterprise Adoption Spectrum

Kicking the tires
- Is it real?
- Do I need to deploy everywhere?
- Equipment status?
- SP support?
- Addressing
- What does it cost?

Pilot/Early Deployment

Production/Looking for parity and beyond
- Mostly or completely past the “why?” phase
- Assessment (e2e)
- Weeding out vendors (features and $)
- Focus on training and filling gaps

- Still fighting vendors
- Content and wide-scale app deployment
- Review operational cost of 2 stacks
- Competitive/Strategic advantages of new environment
Monitoring Market Drivers

Address Space
- Emerging Markets
- Public IPv4 Address Space
- RFC1918 Exhaustion
- RFC1918 Collisions (M&A)

Operating Systems – Applications
- All major OSes support IPv6
- Microsoft W7/Server 2008
- Microsoft DirectAccess

National IT Strategy
- US Federal Mandate
- CNGI
- European Commission

Infrastructure Evolution
- DOCSIS 3, FTTH, Cloud, Mobile SP, Sensor Networks
Planning and Deployment Summary
IPv6 Integration Outline

Pre-Deployment Phases
- Establish the network starting point
- Importance of a network assessment and available tools
- Defining early IPv6 security guidelines and requirements
- Additional IPv6 “pre-deployment” tasks needing consideration

Deployment Phases
- Transport considerations for integration
- Campus IPv6 integration options
- WAN IPv6 integration options
- Advanced IPv6 services options
Integration/Coexistence Starting Points
Example: Integration Demarc/Start Points in Campus/WAN

1. Start dual-stack on hosts/OS
2. Start dual-stack in campus distribution layer (details follow)
3. Start dual-stack on the WAN/campus core/edge routers
4. NAT-PT for servers/apps only capable of IPv4 (temporary only)
Pre-Deployment Checklist

Other Critical Network Planning Requirements

✓ Establish starting point, network assessment, security guidelines
✓ Acquire IPv6 address block and create IPv6 addressing scheme
✓ Create and budget for an IPv6 lab that closely emulates all network elements (routers, switches, hosts, OS)
✓ Upgrade DNS server to support IPv6
✓ Establish network management considerations (hardware, MIBs required for v6, etc.)
✓ Routing and multicast protocol and selection/evaluation process (align with IPv4 choice is possible)
✓ Consider options for centralized ISATAP router (see campus example)
✓ Evaluate IPv6-capable transport services available from current Service Provider (SP)
Infrastructure Deployment

Start Here: Cisco IOS Software Release Specifics for IPv6 Features
http://www.cisco.com/univercd/cc/td/doc/product/software/ios123/123cgcr/ipv6_c/ftipv6s.htm
IPv6 Coexistence

- IPv6 Network
- IPv6 Host
- Configured Tunnel/MPLS (6PE/6VPE)
- Dual Stack
 - IPv4: 192.168.99.1
 - IPv6: 2001:db8:1::1/64
- IPv6/IPv4
- MPLS/IPv4
- Configured Tunnel/MPLS (6PE/6VPE)
- IPv6 Network
- IPv6 Host

IPv6/IPv4

- ISATAP Tunneling
 - (Intra-Site Automatic Tunnel Addressing Protocol)
 - 6to4
 - 6rd
 - Manual Tunnels
Campus IPv6 Deployment Options
Dual-Stack IPv4/IPv6

- #1 requirement—switching/routing platforms **must** support **hardware** based forwarding for IPv6
- IPv6 is transparent on L2 switches but—
 - L2 multicast—MLD snooping
 - IPv6 management—Telnet/SSH/HTTP/SNMP
 - Intelligent IP services on WLAN
- Expect to run the same IGPs as with IPv4
- VSS supports IPv6
Campus IPv6 Deployment Options

Hybrid Model

- Offers IPv6 connectivity via multiple options
 - Dual-stack
 - Configured tunnels—L3-to-L3
 - ISATAP—Host-to-L3
- Leverages existing network
- Offers natural progression to full dual-stack design
- May require tunneling to less-than-optimal layers (i.e. core layer)
- ISATAP creates a flat network (all hosts on same tunnel are peers)
 - Create tunnels per VLAN/subnet to keep same segregation as existing design (not clean today)
- Provides basic HA of ISATAP tunnels via old Anycast-RP idea
Campus IPv6 Deployment Options
IPv6 Service Block—an Interim Approach

- Provides ability to **rapidly deploy IPv6 services without touching existing network**
- Provides **tight control of where IPv6 is deployed** and where the traffic flows (maintain separation of groups/locations)
- Offers the same advantages as Hybrid Model without the alteration to existing code/configurations
- Configurations are very similar to the Hybrid Model
 - ISATAP tunnels from PCs in access layer to service block switches (instead of core layer—Hybrid)
- 1) Leverage existing ISP block for both IPv4 and IPv6 access
- 2) Use dedicated ISP connection just for IPv6—Can use IOS FW or PIX/ASA appliance

![Diagram showing IPv6 service block deployment options with ISATAP tunnels and VLANs]

Primary ISATAP Tunnel
Secondary ISATAP Tunnel

2

IPv4-only Campus Block

Internet

Dedicated FW

WAN/ISP Block

Data Center Block

VLAN 2

VLAN 3

1

ISATAP

IPv6 Service Block

Agg Layer

Access Layer

Core Layer

Dist. Layer

Access Layer

Agg Layer

Core Layer

Dist. Layer

Core Layer

Dist. Layer

Primary ISATAP Tunnel
Secondary ISATAP Tunnel

Presentation_ID © 2006 Cisco Systems, Inc. All rights reserved. Cisco Public 16
IPv6 Data Center Integration

- The single most overlooked and potentially complicated area of IPv6 deployment
- Front-end design will be similar to campus based on feature, platform and connectivity similarities – Nexus, 6500 4900M
- IPv6 for SAN is supported in SAN-OS 3.0
- Major issue in DC with IPv6 today- NIC Teaming
- Watch status of IPv6 support from App, Grid, DB vendors, DC management
 - Get granular – e.g. iLO
 - Impact on clusters – Microsoft Server 2008 Failover clusters full support IPv6 (and L3)
- Build an IPv6-only server farm?
IPv6 in the Data Center
Biggest Challenges Today

- Network services above L3
 SLB, SSL-Offload, application monitoring (probes)
 Application Optimization (WAAS)
 High-speed security inspection/perimeter protection

- Application support for IPv6
 If an application is protocol centric (IPv4):
 Needs to be rewritten
 Needs to be translated until it is replaced
 Wait and pressure vendors to move to protocol agnostic framework

- Growing DC complexity
 Virtualization should make large DCs simpler and more flexible
 Lack of robust DC/Application management is often the root cause of all evil
 Ensure management systems support IPv6 as well as the devices being managed
WAN/Branch Deployment

- Cisco routers have supported IPv6 for a long time
- Dual-stack should be the focus of your implementation—but, some situations still call for tunneling
- Support for every media/WAN type you want to use (Frame Relay, leased-line, broadband, MPLS, etc.)
- Don’t assume all features for every technology are IPv6-enabled
- Better feature support in WAN/branch than in campus/DC
IPv6 Enabled Branch
Take Your Pick—Mix-and-Match

- **Branch Single Tier**
 - Internet
 - Dual-Stack IPSec VPN (IPv4/IPv6)
 - IOS Firewall (IPv4/IPv6)
 - Integrated Switch (MLD-snooping)

- **Branch Dual Tier**
 - Internet
 - Dual-Stack IPSec VPN or Frame Relay
 - IOS Firewall (IPv4/IPv6)
 - Switches (MLD-snooping)

- **Branch Multi-Tier**
 - MPLS
 - Dual-Stack IPSec VPN or MPLS (6PE/6VPE)
 - Firewall (IPv4/IPv6)
 - Switches (MLD-snooping)
Remote VPN – IPv6

- Cisco VPN Client 4.x
 - IPv4 IPSec Termination (PIX/ASA/IOS VPN/Concentrator)
 - IPv6 Tunnel Termination (IOS ISATAP or Configured Tunnels)

- AnyConnect Client 2.x
 - SSL/TLS or DTLS (datagram TLS = TLS over UDP)
 - Tunnel transports both IPv4 and IPv6 and the packets exit the tunnel at the hub ASA as native IPv4 and IPv6

- Microsoft DirectAccess
Communicating with the Service Provider
Top SP Concerns for Enterprise Accounts

- Port to Port Access
- Multi-Homing
- IPv6
- Content
- Provisioning
Port-to-Port Access

- **Basic Internet**
 - Dual-stack or native IPv6 at each POP
 - SLA driven just like IPv4 to support VPN, content access

- **MPLS**
 - 6VPE
 - IPv6 Multicast

- **Hosted (see content)**
 - IPv6 access to hosted content
 - Cloud migration (move data from Ent DC to Hosted DC)
Multi-Homing

Port to Port Access Multi-Homing

Content Provisioning

IPv6

PI/PA Policy Concerns

- PA is no good for customers with multiple providers or change them at any pace
- PI is new, constantly changing expectations and no “guarantee” an SP won’t do something stupid like not route PI space
- Customers fear that RIR will review existing IPv4 space and want it back if they get IPv6 PI

NAT

- Religious debate about the security exposure – not a multi-homing issue
- If customer uses NAT like they do today to prevent address/policy exposure, where do they get the technology from – no scalable IPv6 NAT exists today

Routing

- Is it really different from what we do today with IPv4? Is this policy stuff?
- Guidance on prefixes per peering point, per theater, per ISP, ingress/egress rules, etc.. – this is largely missing today
Hosted/Cloud Apps today
- IPv6 provisioning and access to hosted or cloud-based services today (existing agreements)
- Salesforce.com, Microsoft BPOS (Business Productivity Online Services), Amazon, Google Apps

Move to Hosted/Cloud
- Movement from internal-only DC services to hosted/cloud-based DC
- Provisioning, data/network migration services, DR/HA

Contract/Managed Marketing/Portals
- Third-party marketing, business development, outsourcing
- Existing contracts – how to offer to connect over IPv6
Provisioning

SP Self-Service Portals

- Not a lot of information from accounts on this but it does concern them
- How can they provision their own services (i.e. cloud) to include IPv6 services and do it over IPv6

SLA

- More of a management topic but the point here is that customers want the ability to alter their services based on violations, expiration or restrictions on the SLA
- Again, how can they do this over IPv6 AND for IPv6 services
The Scope of IPv6 Deployment

Web Content Management

Applications & Application Suites

Networked Device Support

Networked Infrastructure Services

Deployment Scenario

IPv6 over IPv4 Tunnels
(Seeded, 6to4, ISATAP, GRE)

Dual-Stack

IPv6 over MPLS
(6PE/6VPE)

IP Services (QoS, Multicast, Mobility, Translation)

Hardware Support

Connectivity

IP Addressing

Routing Protocols

Instrumentation

Basic Network Infrastructure

Roll-out Releases & Planning

Staff Training and Operations
Conclusion

- Create a virtual team of IT representatives from every area of IT to ensure coverage for OS, Apps, Network and Operations/Management

- Microsoft Windows Vista, 7 and Server 2008 will have IPv6 enabled by default—understand what impact any OS has on the network

- Deploy it – at least in a lab – IPv6 won’t bite

- Things to consider:
 - Focus on what you must have in the near-term (lower your expectations) but pound your vendors and others to support your long-term goals
 - Don’t be too late to the party – anything done in a panic is likely going to go badly