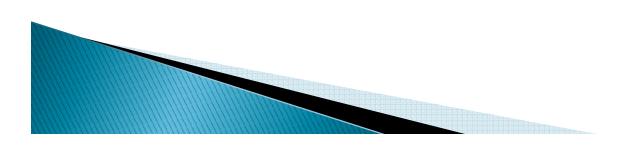
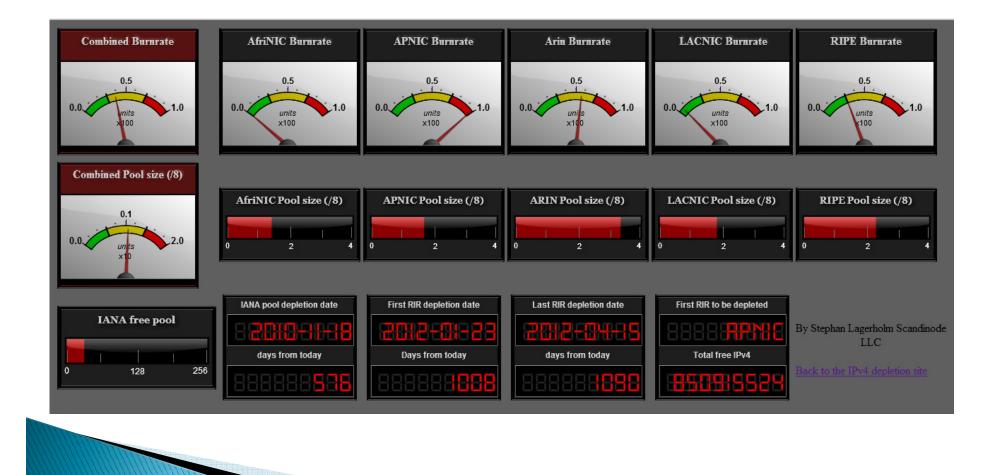


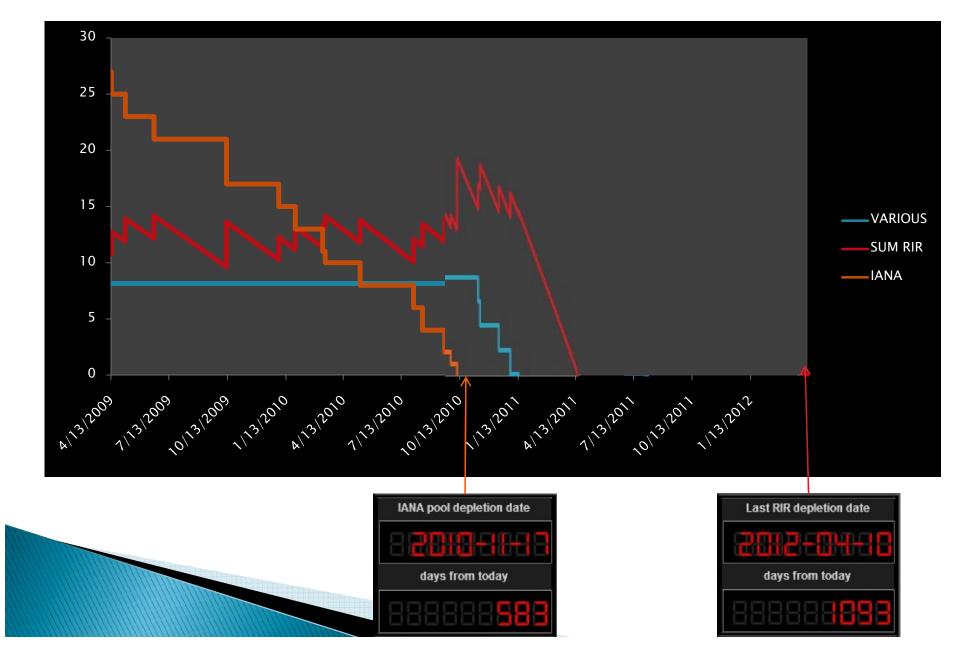
IPv6 in LAN environments Stephan Lagerholm

Introduction

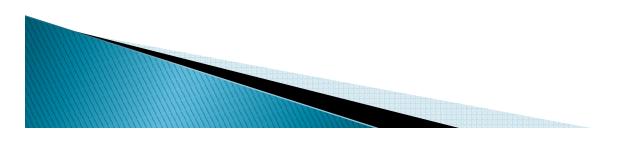

- About me:
 - Independent consultant IPv6, Security, DNS, DHCP
 - M.Sc. from Uppsala University, Sweden, CISSP certified
 - <u>www.scandinode.com</u>
 - www.txv6tf.org
 - www.ipv4depletion.com
 - <u>stephan@lagerholm.com</u>


Top 3 reasons why migrate to IPv6

- 1. We are running out of IPv4 addresses.
- 2. There are some new cool features in IPv6.
- 3. Everybody else is migrating to IPv6 and we can not connect to them unless we migrate.


There is a misbelieve that IPv4 depletion is a problem for Asia and not US/EU.

The IPv4 depletion dashboard



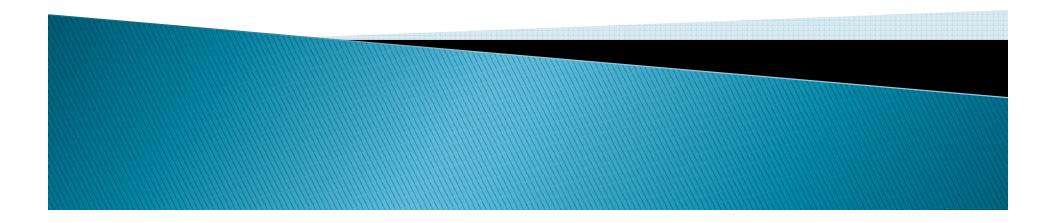
The IPv4 end game (with/without rush)

Facing the facts!

- > This is a major upgrade.
- All equipment > L2 must be upgraded.
- First upgrade for most Network engineers.
- We are running out of time
- IPv6 adoption will explode at some point.
 - We are already behind.
 - The growth of IPv6 Internet doesn't require any digging.
 - The value of IPv4 will decrease quickly.

How long does it take?

- Google
 - Started slowly in March 2005.
 - Most work done in 2008.
 - Google over IPv6 launched in January 2009.
 - Alerts, Picasa, Maps and a bunch of others in March 2009.
 - Still just a handful of services.
- Bechtel
 - Started in October 2004
 - Completed migration by the end of 2008.
- Scandinode
 - One Linux Laptop, One Vista, One XP, Nintendo Wii
 - 10 hosted web domains.


Planning for IPv6 in your LAN

- Address planning and management
- Naming (DNS)
- IP-address assignment (DHCP)
- Security

Address assignment

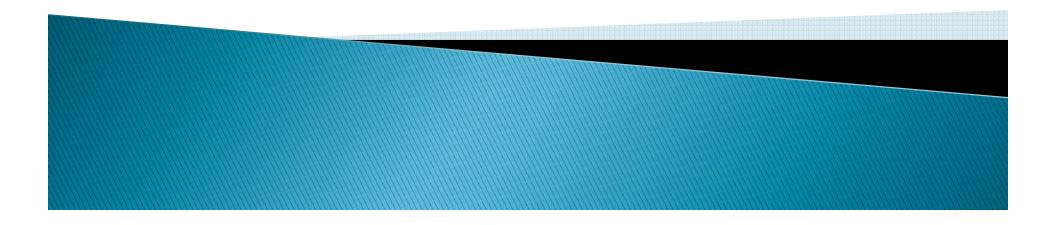
Noah:Maliah:Isaiah:Nariah:McCai:Josiah:Jonah:Jeremiah

IP Address Management

- Basically the same as in IPv4 but...
- Each subnet is a million times bigger than the US deficit.
- Think "Post-it" note
- No need to reuse.
- No need to be frugal.

IPv6 subnet design

- Example
 - 2001:DB8:CAFE::/48 allocated from your ISP
 - 65k subnets to play with

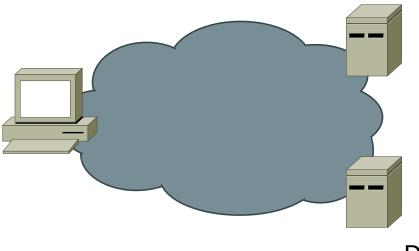

Nariah group

	Possibilities	Digit position
Campus	0-F	xxxx:xxxx:xxxx:Xxxx
Building	0-F	xxxx:xxxx:xxxx:xXxx
Floor	0-F	xxxx:xxxx:xxxX:xxXX
Subnet	0-F	xxxx:xxxx:xxxX:xxXX

- 2001:DB8:CAFE:**1A40**::/64
- 2001:DB8:CAFE:42FF::/64 (F)

Campus 1, Building 10 (A), Floor 4, Subnet 0 Campus 4, Buildning 2, Floor 15 (F), Subnet 15

Address assignment



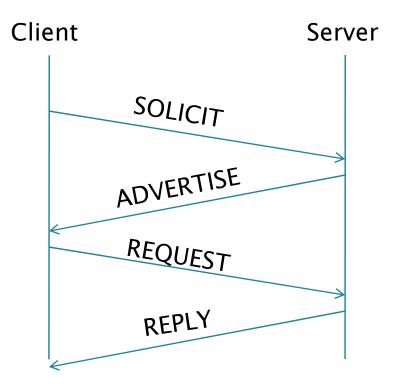
Address assignment in IPv6

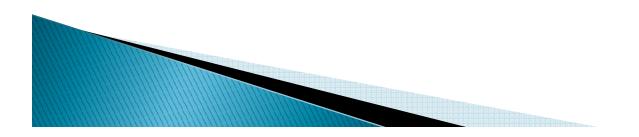
Static/Stateless/Dynamic

- SLAAC
 - Default gateway
 - no DNS server (experimental in RFC 5006)
- DHCPv6
 - New protocol, new ports (UDP 546, 547)
 - DNS server
 - no default gateway
- So, you will need them both.

Split brain DHCP and lease times

DHCP A

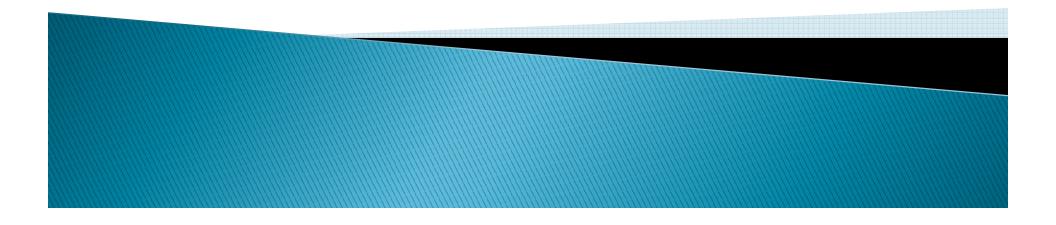

2001:db8:1:2:0000:0000:0000:0000 To 2001:db8:1:2:7FFF:FFFF:FFFF:FFFF


2001:db8:1:2:8000:0000:0000:0000 To 2001:db8:1:2:FFFF:FFFF:FFFF:FFFF

DHCP B

- Conservation of IP addresses no longer a design goal.
- Lease times can be much longer.

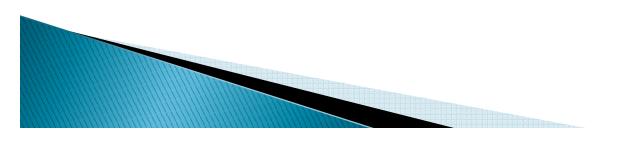
Rapid commit in DHCPv6



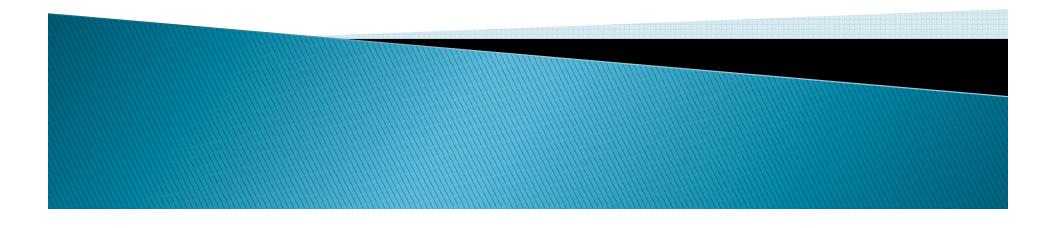
Prefix delegation

- In DHCP for IP version 4, you can only assign addresses to clients, not networks.
- In DHCPv6 you can assign networks instead of addresses with the prefix delegation feature.
- For consumers with Broadband connections this features can be used by the ISP to delegate a /48 to each customer.
- How to update the routing table is still under discussion.

DNS



DNS in IPv6


- DNS maps a
 - hostname to an IP-address
 - An IP-address to a hostname
 - Helps hosts find other servers (Mail, AD, etc)
- DNS mandatory in IPv6, even for internal hosts, router, switches, etc.
- IPv6 is 128 bits = Impossible to manually work with.
- In the simplest form, just add AAAA records.

DNS and dual stack

- DNS is key for a dual stack implementation.
- The lookup of A versus AAAA records is independent of whether the DNS packets are carried over IPv4 or IPv6
- There is no assumption that the DNS servers know:
 - The IPv4/IPv6 capabilities of the requesting node.
 - The IPv4/IPv6 capabilities of the intermediate network
- Most modern OS tends to try IPv6 if there is an AAAA record.

Some Security Pitfalls in IPv6

DNS and Firewalls in IPv6

- A DNS packet with IPv6 can be bigger than 512 bytes.
- > DNS implemented by many firewalls as:
 - UDP 53 is used for queries
 - TCP 53 for zone transfers
- RFC says
 - UDP is used for queries less than 512 bytes
 - TCP for all other packets

- Next Idea
 - Implement EDNS0 that an extension that allowed up to 4096 bytes DNS packets.
- However, many firewalls just throws away DNS packets larger than 512 bytes.

Root zone operators are being nice

stephan@pi:~\$ dig @127.0.0.1 . ns

; <<>> DiG 9.3.4-P1.1 <<>> @127.0.0.1 . ns ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 25893 ;; flags: qr rd ra; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITIONAL: 15

;; ADDITIONAL SECTION:

120942 IN	Α	199.7.83.42
120942 IN	A	202.12.27.33
120942 IN	A	198.41.0.4
120942 IN	A	192.228.79.201
120942 IN	A	192.33.4.12
120942 IN	Α	128.8.10.90
120942 IN	Α	192.203.230.10
120942 IN	A	192.5.5.241
120942 IN	A	192.112.36.4
120942 IN	Α	128.63.2.53
120942 IN	A	192.36.148.17
120942 IN	Α	192.58.128.30
120942 IN	Α	193.0.14.129
120942 IN	AAA	
120942 IN	AA	AA 2001:dc3::35
	120942 IN 120942 IN	120942 IN A 120942 IN A

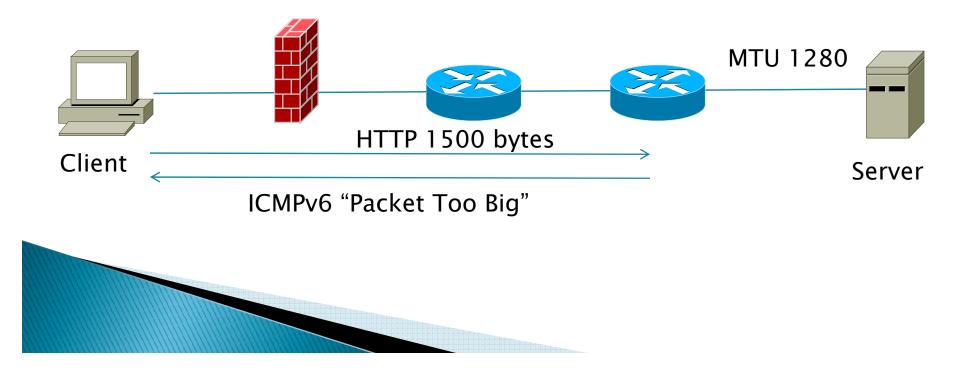
;; Query time: 2 msec

;; MSG SIZE rcvd: 492

stephan@pi:~\$ dig +bufsize=4096 @127.0.0.1 . ns

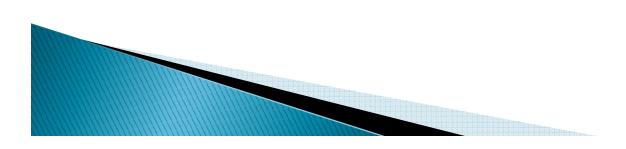
; <<>> DiG 9.3.4-P1.1 <<>> +bufsize=4096 @127.0.0.1 . ns ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 21599 ;; flags: qr rd ra; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITIONAL: 21

;; OPT PSEUDOSE	CTION:			
; EDNS: version: 0, flags:; udp: 4096				
;; ADDITIONAL SEC	CTION:			
i.root-servers.net.	121031 IN	A 192.36.148.17		
j.root-servers.net.	121031 IN	AAAA 2001:503:c27::2:30		
j.root-servers.net.	121031 IN	A 192.58.128.30		
k.root-servers.net.		AAAA 2001:7fd::1		
k.root-servers.net.	121031 IN	A 193.0.14.129		
I.root-servers.net.	121031 IN	AAAA 2001:500:3::42		
I.root-servers.net.	121031 IN	A 199.7.83.42		
m.root-servers.net.	121031 IN	AAAA 2001:dc3::35		
m.root-servers.net.	121031 IN	A 202.12.27.33		
a.root-servers.net.	121031 IN	AAAA 2001:503:ba3e::2:30		
a.root-servers.net.	121031 IN	A 198.41.0.4		
d.root-servers.net.	121031 IN	A 128.8.10.90		
e.root-servers.net.	121031 IN	A 192.203.230.10		
f.root-servers.net.	121031 IN	AAAA 2001:500:2f::f		
g.root-servers.net.	121031 IN	A 192.112.36.4		
h.root-servers.net.	121031 IN	AAAA 2001:500:1::803f:235		
h.root-servers.net.	121031 IN	A 128.63.2.53		

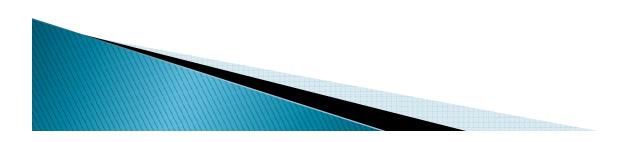

;; Query time: 2 msec ;; MSG SIZE rcvd: 643

Size 492 without EDNS0

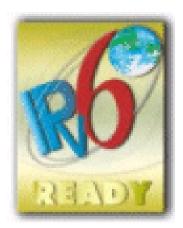
Size 643 with EDNS0

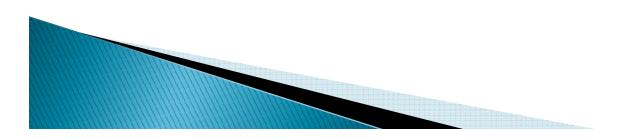

Path MTU discovery

- IPv6 uses a different method to figure out the Maximum Transfer Unit on a path.
- ICMPv6 "Packet too big" sent from the intermediate router back to the sender.

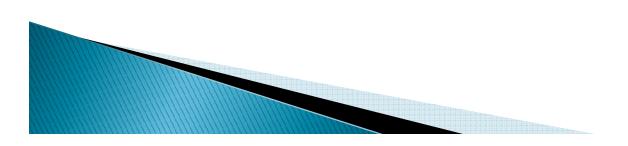

Path MTU discovery

- Need to open a src:ANY rule in the firewall.
 - Typically requires: IPS, OS hardening, controls of patching etc.
- There is a payload field in the ICMP packet.
- Very hard to secure this for all internal nodes.
- pMTU might not happen, perhaps just use 1280 bytes.




IPSEC

- ▶ IPSEC Mandatory in IPv6 (Optional in IPv4).
- This does not mean that you can start encrypting sessions left and right.
- Can only do this when encryption is solved.
- Direct Access in Windows 7.


The IPv6 ready program

Questions ???

- www.scandinode.com
- www.txv6tf.org
- www.ipv4depletion.com
- stephan@lagerholm.com

