IPv6 Security

Scott Hogg
GTRI - Director of Advanced Technology Services
CCIE #5133, CISSP #4610
IPv6 Security

• We will all migrate to IPv6 eventually, but when and how remain to be seen
• I bet you have some IPv6 running on your networks already
• Do you use Linux, MacOS X, BSD, or MS Vista?
 – They all come with IPv6 capability, some even have IPv6 enabled by default (IPv6 preferred)
 – They may try to use IPv6 first and then fall-back to IPv4
 – Or they may create IPv6-in-IPv4 tunnels to Internet resources to reach IPv6 content
 – Some of these techniques take place regardless of user input or configuration
• If you are not protecting your IPv6 nodes then you have just allowed a huge back-door to exist
IPv6 Security Threats

- There isn’t much of a hacker community focusing on IPv6 today but that is likely to change as IPv6 becomes more popular – IPv6 will gain the hacker’s attention
- Many vendors (Cisco, Juniper, Microsoft, Sun, Open Source) have already published IPv6 bugs/vulnerabilities
- Attacks at the layers below and above the network layer are unaffected by the security of IPv6
IPv6 Attack Tools

• THC IPv6 Attack Toolkit
 – parasite6, alive6, fake_router6, redir6, toobig6, detect-new-ip6, dos-new-ip6, fake_mld6, fake_mipv6, fake_advertiser6, smurf6, rsmurf6

• Scanners
 – Nmap, halfscan6

• Packet forgery
 – Scapy6, SendIP, Packit, Spak6

• DoS Tools
 – 6tunneldos, 4to6ddos, Imps6-tools
Reconnaissance

- First step of an attack
- Checking registries (whois), DNS (nslookup, dig, etc.), Google
- Ping sweeps, port scans, application vulnerability scans
- IPv6 makes the ping sweeps problematic
 - The address space is too large to scan
- Ping FF02::1 may give results
- Node Information Queries (RFC 4620)
- Attackers may find one host and leverage the neighbor cache
LAN Threats

• IPv6 uses ICMPv6 for many LAN operations
 – Stateless auto-configuration
 – IPv6 equivalent of IPv4 ARP
• Spoofed RAs can renumber hosts or launch a MITM attack
• NA/NS – same attacks as with ARP
• DHCPv6 spoofing
• Redirects – same as ICMPv4 redirects
• Forcing nodes to believe all addresses are on-link
Secure Neighbor Discovery (SEND)

- IPSec is not usable to secure NDP
- SEND (RFC 3971) defines the trust model for nodes communicating on a LAN
- Nodes use public/private key pair to create Cryptographically Generated Addresses (CGA – RFC 3972) which is the last 64 bits of address (interface ID)
- Improvements on standard neighbor discovery:
 - Neighbor Discovery Protocol messages use RSA-based cryptography to protect their integrity
 - Signed ND messages protect message integrity and authenticate the sender.
 - Trust anchors may certify the authority of routers.
- Current Deployment
 - DoCoMo USA Labs - OpenSource SEND Project
 - Cisco 12.4T and 12.2SR
Cryptographically Generated Addresses (CGA)

- Each device has a RSA key pair (no need for cert)
- Ultra light check for validity
- Prevent spoofing a valid CGA address

RSA Keys
- Priv
- Pub

Modifier (nonce)
- Public Key
- Subnet Prefix

Subnet Prefix

Signature

SHA-1

Send Messages

Crypto. Generated Address

© 2009 Global Technology Resources, Inc. All Rights Reserved.
Extension Headers (EHs)

• Extension Headers
 – Each header should not appear more than once with the exception of the Destination Options header
 – Hop-by-Hop extension header should only appear once.
 – Hop-by-Hop extension header should be the first header in the list because it is examined by every node along the path.
 – Destination Options header should appear at most twice (before a Routing header and before the upper-layer header).
 – Destination Options header should be the last header in the list if it is used at all.

• Header Manipulation – Crafted Packets
• Large chains of extension headers
 – Separate payload into second fragment
 – Consume resources - DoS

• Invalid Extension Headers – DoS
• Routing Headers Type 0 – source routing
Routing Header 0 Attack

RH0 Attacker
Fedora7

Cisco ASA

VLAN 11

2001:db8:11:0::/64

VLAN 22

RH0 Destination
2001:db8:22:0::/64

FreeBSD
WinXP

RH0 Midway

Cisco 2811

2001:db8:11:0::/64

2001:db8:22:0::/64
Hierarchy and Traceback

IPv6 Internet

ISP1

2001:db8::/32

ISP2

2001:db9::/32

2001:db8:1000::/48

Inbound Filter: Allow only packets sourced from 2001:db8:1000::/48
Outbound Filter: Allow only packets destined for 2001:db8:1000::/48

Victim Server
Transition Mechanism Threats

- Dual Stack - Preferred
 - You are only as strong as the weakest of the two stacks.
 - Running dual stack will give you at least twice the number of vulnerabilities

- Manual Tunnels - Preferred
 - Filter tunnel source/destination and use IPSec
 - If spoofing, return traffic is not sent to attacker

- Dynamic Tunnels
 - 6to4 Relay routers are “open relays”
 - ISATAP – potential MITM attacks
 - Attackers can spoof source/dest IPv4/v6 addresses

- Protocol Translation – Not recommended

- Deny packets for transition techniques not in use
 - Deny IPv4 protocol 41 forwarding unless that is exactly what is intended – unless using 6to4 tunneling
 - Deny UDP 3544 forwarding unless you are using Teredo-based tunneling
IPv6 Firewalls

• Don’t just use your IPv4 firewall for IPv6 rules
• Don’t just blindly allow IPSec or IPv4 Protocol 41 through the firewall
• Procure separate firewalls for IPv6 policy
• Look for vendor support of Extension Headers, Fragmentation, PMTUD
• Firewalls should have granular filtering of ICMPv6 and multicast
• Some hosts may have multiple IPv6 addresses so this could make firewall troubleshooting tricky
• Layer-2 firewalls are trickier with IPv6 because of ICMPv6 ND/NS/NUD/RA/RS messages
IPv6-Capable Firewalls

• Many vendors already have IPv6 capabilities
 – Cisco Router ACLs, Reflexive ACLs, IOS-based Firewall, PIX, ASA, FWSM
 – Juniper, CheckPoint, Fortinet, others
 – ip6tables, ip6fw, ipf, pf
 – Windows XP SP2, Vista IPv6 Internet Connection Firewall

• IPv6 firewalls don’t have all the same full features as IPv4 firewalls
 – UTM features may only work for IPv4
 – Vendors are working toward feature parity
IPv6 Intrusion Prevention

- Few signatures exist for IPv6 packets
- IPSs should send out notifications when non-conforming IPv6 packets are observed
- Faulty parameters, bad extension headers, source address is a multicast address
- IPv6-Capable IPSs
 - Snort 2.8 Beta and 3.0 Alpha
 - CheckPoint (NFR) Sentivist
 - Cisco 4200 IDS appliances (v6.1)
 - Juniper/NetScreen ScreenOS
 - IBM/ISS Proventia/RealSecure
Summary of BCPs

- Perform IPv6 filtering at the perimeter
- Use RFC2827 filtering and Unicast Reverse Path Forwarding (uRPF) checks throughout the network
- Use manual tunnels instead of dynamic tunnels
- Use a NAC/802.1X solution, disable unused switch ports, Ethernet port security, until SEND is available
- Deny packets for transition techniques not in use
 - Deny IPv4 protocol 41 forwarding unless that is exactly what is intended – unless using 6to4 tunneling
 - Deny UDP 3544 forwarding unless you are using Teredo-based tunneling
- Leverage IPSec for everything possible
- Try to achieve equal protections for IPv6 as with IPv4
IPv6 Security Summary

• IPv6 is no more or less secure than IPv4
 – Lack of IPv6 knowledge and experience is the issue
• There are an increasing number of security products that support IPv6
• IPv6 will change traffic patterns (p2p, MIPv6)
• IPv6 larger addresses makes worms and scanning less effective but there are still ways to find hosts
• IPv6 hierarchical addressing and no NAT should reduce the anonymity of hackers and allow for full IPSec
• LAN-based attacks exist in IPv6, Physical Security, Ethernet port security, NAC, 802.1X, SEND can help
Yet another IPv6 Book

Questions and Answers

Q:

&

A:

SHogg@GTRI.com Mobile: 303-949-4865
Scott@HoggNet.com