Secure64

Use cases for DNS64/NAT64
Agenda / About Me

- VP of Sales and Customer Solutions at Secure64 Software Corp.
- Director and founder of the TXv6TF
- Personal blog at IPv4depletion.com
IPv4 Depletion

- Global IANA pool depleted in Feb-2011
IPv6 Deployment

- Deployment is minimal,
 - Texas Universities: 1/107
 - www.tamu.edu 2606:aa00:3:202::6
 - Texas Corporations: 0/30
 - softlayer.com 2607:f0d0:1000:11:1::4
 - Texas Counties: 2/233
 - www.angelinacounty.net 2620:0:50e0:3::31

- But on the other hand,
 - Large content providers (Google, Yahoo!, etc) are committed to the world IPv6 launch day.
 - 25% of all DNS lookups have the potential to go over IPv6, mainly because of Godaddy
 - IPv6 compliant organizations reported peaks of 68% IPv6 traffic during the world IPv6 day in 2011.
About Secure64

DNS Manager

DNS Authority

DNS Signer

DNS Cache

SourceT Micro OS
Supporting IPv6 in DNS

Necessary Intermediate Steps

- Features to help migrate away from IPv4
- Features to help migrate to Dual Stack
- Handle IPv6 specific issues
- Function over IPv6 transport
- AAAA resource records

Most DNS implementations have only addressed these two

IPv4 only network

IPv6 only network

Time
Transition Mechanisms

Native/Dual Stack
- Dual Stack
 - DOCSIS 3.0
- 3GPP
- A+P
- DS-LITE

Dual Stack
- NAT64/DNS64
- IVI
- 6to4
- Teredo
- 6RD
- LISP
- ISATAP
- Tunnel v4 in v6

Translate
- Tunnel v6 in v4
What is NAT64/DNS64

- Transition mechanism to IPv6
- Defined in RFC 6146 and RFC 6147

- Two components, DNS server and NAT gateway.
- Utilizes DNS to “lie” to the client, saying that everything has an AAAA record.
- Multiple use cases.

- Use Case I (Service Providers)
 - Allow IPv6 only clients to communicate with IPv4 only servers

- Use Case II (Content providers)
 - Enable IPv6 for IPv4 only servers without dual stacking each server.

- The reason we can do NAT64 is that the IPv6 address space is larger than the IPv4 address space.
IPv6 and DNS

- Some common misunderstandings and pitfalls about v6 and DNS:
 - The network protocol (v4 or v6) is not linked to the record type (A or AAAA) that can be looked up.
 - The network protocol (v4 or v6) used between the client and the recursive DNS is not related to the network protocol used between the recursive DNS and the authoritative DNS.
 - If there is an outgoing v6 interface, then the DNS system will start to use it.
x2 load on DNS

getaddrinfo() → A → AAAA
Dual Stack Issues

- Brokenness – A painful long timeout before the user reverts back to IPv4
 - Happy eyeballs implemented in Firefox and Chrome
 - Filter-AAAAA implemented in some DNS servers
 - Does not appear to be a large problem. No complaints during world IPv6 day reported.
NAT64 / DNS64 Solution

Secure64 DNS cache:

dns64-prefix list:
 2001:db8:1::/96
 2001:db8:2::/96
 2001:db8:3::/96
NAT64 / DNS64 Under The Hood

Client

www.ipv4only.com

Q AAAA?

R = 2001:db8:101::c000:201

DNS64

Q AAAA?

EMPTY

Q A?

R = 192.0.2.1

Authoritative DNS

Webserver

2001:db8:101::c000:201

R = 192.0.2.1

192.0.2.1

192.0.2.1

2001:db8:101::c000:201
Use Case I, NAT64 / DNS64 for Service Providers

- Only viable approach if you don’t have enough IPv4 addresses for dual stack
- DNS64/NAT64 does not break anything. But badly programmed applications/websites might not work.
- User experience with NAT64 is (almost) the same as NAT44 and better than NAT444
 - We had some issues with NAT44 back in the days too. But we managed to work around those
 - Passive FTP
 - IPSEC over UDP
 - Peer to Peer
NAT64/CGN and Logging

To the v6 internet

To the v4 internet

- Each user will create gigabytes of logs
- Only packets to the v4 internet have to be logged
- Maximizing the native v6 traffic minimizes the logs
- Make sure your DNS64 server returns all native domains without using PREF64 translation.

Logging - As a content provider, make sure to turn on v6 so that your visitors don’t have get all their sessions logged.
Use case 1.5
The Future of NAT64/DNS64

- How do we handle broken applications and websites?
- draft-ietf-behave-nat64-discovery-heuristic-07.txt
- draft-ietf-v6ops-464xlat-01
DNS64 Functionality Options

- Sticky clients
 - Make sure a client goes to the same IPv4 server during the session.

- Mixed deployments using views
 - The same DNS server must be able to handle different types of networks and different NAT64 gateways.

- Load balancing via DNS
 - Coarse load balancing of NAT64 gateways

- High availability
 - Take one NAT64 gateway out of rotation if it becomes unavailable.
Configuring for DNS64/NAT64

DNS is now a network technology:

- Who manages the DNS64?
- Do we need to teach our network operators Unix?
- How do we monitor the solution?

So let’s manage it like we manage our other network devices:

```
[view@Secure64]#> enable sysadmin
[sysadmin@Secure64]#> route default 10.10.5.1
[sysadmin@Secure64]#> route default 2001:DB8:1:5::1
[sysadmin@Secure64]#> route sym
[sysadmin@Secure64]#> ifconfig eth1 10.10.5.2 255.255.255.0
[sysadmin@Secure64]#> ifconfig eth2 2001:DB8:1:5::2/64
[sysadmin@Secure64]#> activate
[sysadmin@Secure64]#> save
[sysadmin@Secure64]#> show config

[view@Secure64]#> enable cachednsadmin
[cachednsadmin@Secure64]# edit cache.conf
interface: 10.10.5.2
    interface: 2001:DB8:1:5::2
    outgoing-interface: 10.10.5.2
    outgoing-interface: 2001:DB8:1:5::2
    access-control: 0.0.0.0/0 allow
    access-control: ::0/0 allow
dns64-prefix: 64:ff9b::/96
<CTRL-X to save and exit>

[cachednsadmin@Secure64]# stop cachedns
[cachednsadmin@Secure64]# start cachedns
```
DNS64 Everybody Will Need It

Dual stack ← DNS64

IPv4

100%

100%

10%

IPv6

10%

0%

Time
Use case II, NAT64 / DNS64 for Hosting Providers

Client

www.ipv6site.com

DNS64 enabled Authoritative DNS

Q AAAA?

R = 2001:db8:101::c000:201

NAT64

Webserver

2001:db8:101::c000:201

192.0.2.1

2001:db8:101::c000:201

192.0.2.1
Use case II, NAT64 / DNS64 for Hosting Providers

- Simple way of providing a large number of externally reachable servers with IPv6 connectivity

- Just add DNS records point to the NAT64 device
 - www.example.com A 192.0.2.1
 - www.example.com AAAA 2001:db8:101::c000:201

- Does not prevent IPv4 depletion
Conclusions

- The migration to IPv6 will increase the load on DNS servers.
- Dual stack is the IETF recommended transition mechanism but not the only one. Consider alternatives such as DNS64/NAT64.
- Some applications are broken and can’t work over NAT64/DNS64.
- There are many small pitfalls with DNS64/NAT64.

Additional resources
 - http://www.secure64.com/transition-to-ipv6
 - Stephan.lagerholm@secure64.com
 - Visit our booth here at the summit.
Questions?