

IPv6 Embedded Systems and 6LoWPAN Sensor Networks

Charles "Chuck" Sellers

Co-founder, Rocky Mountain IPv6 Task Force May 26, 2010

May 26 2010

Something To Measure

Environmental

- Temperature (°F/°C)
- Humidity (%)
- Pressure (psi/kp)
- Wind speed / direction (mph / m/s)
- Luminosity (Visible, UV) Energy
- Radioactivity (Rad, rem/Sv)
- Chemical detection
- Other

Movement (acceleration, etc.)

- Stress / Strain
- Counting
- Flow (liquid, gas)
- Other
- Solar (W/m²/erg/cm²·s)
- Geothermal (BTU / kWh)
- Magnetic (G / T)
- Other

Something To Measure

Multimedia

- Audio / Sound
- Image (Visible, IR, UV)
- Video (Visible, IR, UV)

Geo-Position/Location/Identification

- GPS (geo-location data) [Lat, Long, Alt]
- RF ID (Gen 2-3)

Industry Interest

RMv6TF

- First Responders
 - Police
 - Fire
 - Ambulance
 - FEMA

- Building Automation Systems
 -Utility Companies
 - -Water
 - -Power
 - -Natural Gas
 - -Telco / Cable

- SCADIA Networks
- Department of Defense
 UAV
 - Seismic monitoring
 - Movement
 - Weather

Health Care
 -Patient Monitoring
 -Patient location

Why IPv6?

- Each embedded node can be individually addressed/accessed by multiple v6 addresses
 - Security policy attached to each address
- End-to-end security
 - Aux. AES Crypto chip
- Can be built to be low-cost
 - Disposable in the military
 - Address space reuse
- Auto-configuration of network
- Mobility
- IPv4 address exhaustion

Cool Counters at HE website: http://ipv6.he.net/statistics/

May 2010 IPv4 Exhaustion Status

- Only 18 blocks remain out of the original 256
- Five are earmarked, one for each RIR when all the other blocks have run out in 2011.
- When the five RIRs have burned through all their remaining holdings, that's it for new IPv4 allocations.
- Projected IANA Unallocated Address Pool Exhaustion: 30-Jul-2011
- Projected RIR Unallocated Address Pool Exhaustion: 16-Mar-2012
- Internet keeps working no new v4 addresses

Today's Mobile Platforms

- Laptops, Netbooks
- Mobile Phones (CDMA, GSM, GPRS, UMTS) 3G/4G
- PDAs (Blackberry, iPad, iTouch, etc.)
 Wi-Fi or cell connectivity
- Embedded Systems (M2M)
 - PC-104 platforms
 - Specialized devices (e.g. embedded microcontrollers)

Remote Platforms

- Future Platforms
 - Trains, Planes, Automobiles, Trucks, Subways, Bikes, Buses, etc.
 - RF ID tags
 - IC Cards
 - Specialty sensors (e.g. Stardust)
 - Boxes, cases, crates, pallets, etc.
 - Power, water, gas meters (some currently now RF capable)

Network Comparison

	Traditional Networks	Wireless Sensor Networks	
Network Lifetime	Long (years)	Short (days-months)	
Network Configuration	Fixed, Static	Dynamic, auto-configuration	
Routing Paradigm	Address-centric	Location-centric	
Bandwidth	High (Mbps-Gbps)	Low (Kbps)	
Routing protocols	BGP, ISIS	MIPv6, OLSR, other	
Resource Constraints	Bandwidth, IPv4 address space	Energy, CPU, memory	
Applications	Application independent	Application specific (sensor dependent)	
Audience	People to people	Machine-to-machine (M2M)	
Security	Rich resources to implement	Constrained by available device resources	

Wireless Connectivity

- Wi-Fi (802.11.a/b/g/n)
- WiMax (802.15.4)
- Public Service Radio Frequencies
- 3G/4G (CDMA, UMTS, GPRS, EVDO, etc.)
- Satellite (e.g. Wild Blue), SatPhone

Remote Sensing & Control

- Typically low volume traffic
- Remote areas
 - oil well heads (TX, Middle East)
 - Natural gas pipelines, electric power grid (SCADA)
- Not easily assessable
 - Bridge spans
 - behind enemy lines
 - High rise building core

Limitations on Small Devices

- Battery
 - Long life requires node to "sleep"
- Transmitter power
 - Tx EIRP + environment dictates range
- Security
 - Crypto on separate chip
 - Minimal memory available in small devices
- Bandwidth
 - Low bandwidth devices
- Memory
 - RAM, ROM, Flash

Sensor Mobility

Example Applications

RMv6TF

- Localized weather monitoring
- Structural Health monitoring (Earthquake prone areas)
- Battlefield troop detection, movement
- Intelligent Transportation Systems (ITS)
- Green app: Building environment management
 - Lights, HVAC, Security Access, smart power outlets, etc.
 - Building demo ~20% MRC cost savings

Today's Two Demonstrations:

- Tini Wx Station
- 6LoWPAN demo (802.15.4)

Embedded Systems - TINI

RMv6TF

Device: DS80s400 (DSTINIm400): Networked Microcontroller Performance: 75 MHz, 1 MB Flash, 1 MB RAM OS: 8051 based java + slush shell (for application development)

- Commercial off the shelf components
- Low cost
- IPv6 capable as of Feb 2005

Sensor selected for demonstration:

- TAI8515 1-Wire Weather Instrument Kit V3.0

Two sensors:

- anemometer
- thermometer

Three metrics:

- wind speed
- wind direction
- temperature

Item	Qty	Cost
DSTINIs400 micro controller	1	\$35.00
DSTINIm400 eval kit/board	1	\$67.00
TAI8515 1-Wire Weather Instrument Kit V3.0	1	\$75.00
SDK, Application Software		Free
Total Cost		\$177.00

MSRP List Prices

System Demonstration Diagram 3Mv6 Sensor Data Wireless IPv6 +5 V DC IPv6

Tiny Internet Network Interface (TINI) microcontroller with web server and java-based web application

May 26 2010

Embedded Systems Applications

Typical Measurements with Commercial Off The Shelf (COTS) sensor:

- Wind Speed
- Wind direction
- Humidity
- Pressure
- Rain
- Lightning

1-Wire[®] Wind Instrument

Custom sensors such as:

Add custom configuration with embedded system via:

- IPv6
- RS-232 serial port
- 1-Wire® port

Into monitoring/controlling devices:

- Environmental
- WMD
- Automotive
- Point of Sale (PoS)

Chemical

Radiation

Highlights of IPv6 over 802.15.4

- Header
- Standard IPv6 header: 40-bytes [RFC 2460]
 - 802.15.4 MTU is 127-bytes [IEEE standard]
- Fragmentation
 - IPv6 requires all links to support 1280-byte packets [RFC 2460]
 - Interoperability: Applications don't need to know the constraints of physical links which carry the packets

Allows link-layer mesh routing under IP topology

- 802.15.4 subnets may utilize multiple radio hops per IP hop
- Similar to Ethernet's LAN switching in IP routing domain
- IP-based Multi-Hop Routing
 - RIP, OSPF, IGP,. BGP, AODV, OLSR, others
 - Small routing tables due to microcontroller constraints

RFC 4944 - Transmission of IPv6 Packets over IEEE 802.15.4 Networks

Benefits of 6LoWPAN over 802.15.4

- Excellent capability to work within resource constraints of: low-power, small-memory, lower speed CPU, lowbandwidth
- Leverages IP operational experience in organizations
- Provides interoperability between low-power devices utilizing IP and existing IP infrastructure, using standard routing protocols and techniques

6LoWPAN Network Topologies

MIPv6 with IPv6 Sensors

- Rover Demo
 - Cisco 3250 MAR
 - Panasonic Camera
 - PC-104
 - Tini Weather Station

Rover MIPv6 Network

802.15.4 with 6LoWPAN

Atmel Raven

Crossbow

Jennic

Vendors

- Atmel (Raven)
- Crossbow

Mv6

- Ember
- Epic
- Freescale
- Jennic
- Microchip
- NEC
- Oki
- Radio pulse
- Renesas
- ST
- TI

6LoWPAN

Q & A

Thank You Chuck@rmv6tf.org Dooky Mountain IDy6 Took For

Rocky Mountain IPv6 Task Force

(Selected references follows)

References

URLs

http://nrlsensorsim.pf.itd.nrl.navy.mil/ http://www.scatterweb.com/ http://www.sics.se/

- RFC 5340 OSPF for IPv6
- RFC 5308 Routing IPv6 with IS-IS
- RFC 5271 Mobile IPv6 Fast Handovers for 3G CDMA Networks
- RFC 5095 Deprecation of Type 0 Routing Headers in IPv6
- RFC 5094 Mobile IPv6 Vendor Specific Option
- RFC 4944 Transmission of IPv6 Packets over IEEE 802.15.4 Networks
- RFC 4919 IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals
- RFC 2460 Internet Protocol, Version 6 (IPv6) Specification

Vendors

Archrock – www.archrock.com Atmel – www.atmel.com Crossbow – www.crossbow.com Dallas Semi/Maxim – www.maxim-ic.com Jennic – www.jennic.com

Software

- uIP Open source TCP/IP stack
 - http://www.sics.se/~adam/uip/index.php/Main Page
 - ARP, SLIP, IP, UDP, ICMP (ping) and TCP protocols.
- TiniOS open-source operating system designed for wireless embedded sensor networks
 - <u>http://www.tinyos.net/special/mission</u>
- Free RTOS
 - <u>http://www.freertos.org/</u>