

Lorenzo Colitti lorenzo@google.com

Why?

IPv4 address space predictions (G. Huston)

Lorenzo Colitti May 2010

To put it into perspective...

IPv4 address utilization: 2000 vs. 2010 Millions

100% = 3,706,650,624 IPv4 addresses

Iljitsch van Beijnum, Ars Technica

Why IPv6? Cost

- Buying addresses will be expensive, more so over time
- Carrier-grade NAT may be expensive
 - Lots of session state memory
 - Session logging for legal reasons
 - Bandwidth
- Being behind a NAT is hard to manage
 - Can't fix problems without NAT operator's help
 - VPN, VOIP, video streaming, gaming, P2P
 - Expensive in operator time, support costs
- Network complexity creates operation / support costs

Why IPv6? Address semantics

- With carrier-grade NAT, users share IP addresses
- Less accurate geolocation
 - Content licensing for streaming, etc.
- Abuse identification / blocking
 - If an IPv4 address is spamming/hacking/...
 - Who is responsible?
 - If we block it, do we take out 100 users?
 - Different from blocking a proxy
- IP-based authentication
 - Of course, nobody would ever do this

Why IPv6? New devices

- We see a growing number of IPv6-only deployments
 - Set-top boxes (free.fr, Comcast, ...)
 - NTT IPTV over IPv6
 - Mobile networks (LTE, NAT64, ...)
- There is simply not enough address space to assign IPv4 addresses to these devices
 - NAT is too expensive
 - CPU on home gateway
 - CPU on routers
- Want to talk to these devices? Need to use IPv6

Why IPv6? Current users

- We're starting to see large ISPs have or prepare for IPv6
 - free.fr (4M users)
 - Comcast commercial trials
 - Softbank / BB-IX 6rd exchange
 - 6rd a player here
- We can serve these users better with IPv6 than IPv4+NAT

Why IPv6? New applications

- The Internet was successful because of end-to-end
- Users still want end-to-end!
 - Skype, Bittorrent, ...
 - Neither of these could have been developed in the absence of public IP addresses
- What happens if this goes away?
 - O Will the Internet become like TV?
 - O Will the Internet become like the phone network?
 - Will any Internet communication require ISP support?

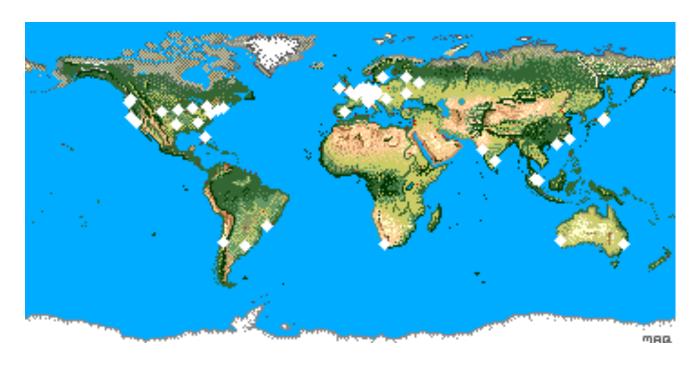
The search for the killer application

- Many are waiting for a "killer application" for IPv6
- This is a misconception
 - It's not "what can IPv6 can do better than IPv4?"
 - It's "can the Internet as we know it continue to operate using IPv4?"
- The killer application of IPv6 is the survival of the open Internet as we know it

Why IPv6 at Google?

- When the day comes that users only have IPv6, Google needs to be there for them
- Serve current users better over IPv6
 - IPv6 can have lower latency and packet loss
 - We have user reports to prove it
 - AJAX applications break behind excessive NAT
 - Connections exhaust public IP port space
 - Growing number of IPv6-only client deployments
 - Set-top boxes, mobile, ...
- IPv6 is good for the Internet, and we want to help

So what have we done?

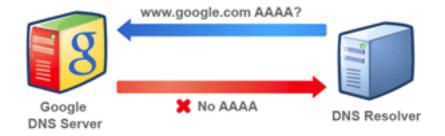

Enable IPv6 for www.google.com?

- We can't enable IPv6 for www.google.com today
 - ~0.05% users won't reach Google any more
 - Broken home gateways, DNS forwarders, ...
 - If you have a problem, can't reach Google to help fix it
 - 0.05% is a lot of users!
 - Many users would have higher latency
 - Long paths, suboptimal routing, tunnels...
 - Bad and incomplete routing is there, but you can't see or fix it if there's nowhere useful to go
 - This has gotten much better now

Providing reliable services over IPv6

- Avoid bad routing by avoiding transit, prefix limits
- Peer with almost everybody
- Bring the network as close to the user as possible
- Serve IPv6 only to production-quality user networks

May 2010


Google over IPv6

- Enables IPv6 access to Google for selected networks
- IPv6 access to most Google web properties
 - o www, mail, news, docs, youtube, ...
 - Owhich ones do you and your users want?
- Requirements:
 - Good IPv6 connectivity to Google
 - Production-quality IPv6 network
 - Commitment to fix problems that break Google for users

How it works

Normally, if a DNS resolver requests an IPv6 address for a Google web site, it will not receive one...

...but a DNS resolver with Google over IPv6 will receive an IPv6 address, and its users will be able to connect to Google web sites using IPv6.

http://www.google.com/ipv6/

Lorenzo Colitti

Google

Results so far

- Enthusiastic response:
 - Over 80 organizations participating
 - Universities, research institutions, an NREN
 - One large French access provider
 - ~ 75% of the native IPv6 Internet
- Feedback so far has been positive
 - Some networks see better IPv6 routing than IPv4
 - Now enough IPv6 traffic that problems get reported
 - Allows participants to bypass IPv4 congestion
- Want to take part? Let us know!

google-ipv6@google.com

Lorenzo Colitti

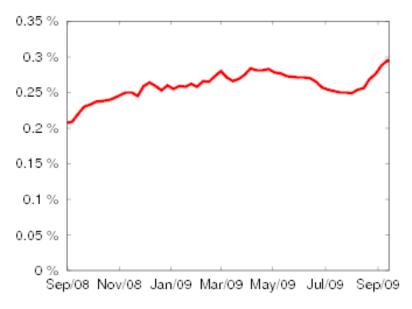
Google

Lessons learned

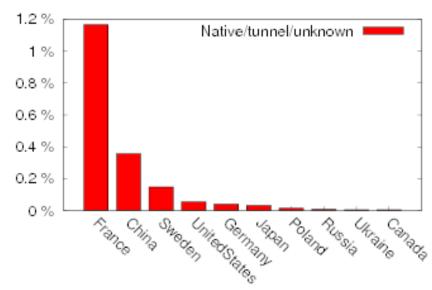
Methodology

- Tap enthusiasm
 - Started as 20% project, great influx of contributors
- Make it easy for contributors to get initial results
 - A pilot network is not expensive
 - Once network is up, internal applications follow
- Do it in stages
 - v6 needn't be as capable as v4 on day one
 - But it must be done properly
 - If it's not production-quality, it's no use to anyone
- Fold it into your normal upgrade cycles

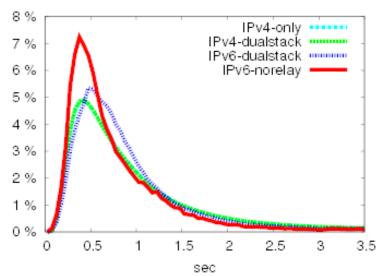
Timeline


April 2005	Obtain and announce address space
July 2007	Network architecture and software engineering begin (20%)
December 2007	Mark Townsley challenges Google to serve IPv6 by IETF 73
January 2008	First pilot router. Google IPv6 conference, Google over IPv6 for attendees
March 2008	ipv6.google.com (IETF 72)
Q3 2008	ipv6.google.cn, ipv6.google.co.jp
November 2008	First Google over IPv6 networks enabled. Google over IPv6 at RIPE / IETF /
January 2009	Google over IPv6 publicly available
March 2009	Google maps available over IPv6, 3x increase in traffic
August 2009	IPv6 enabled in Android (available on Droid and Nexus One)
February 2010	Youtube available over IPv6, 10x increase in traffic

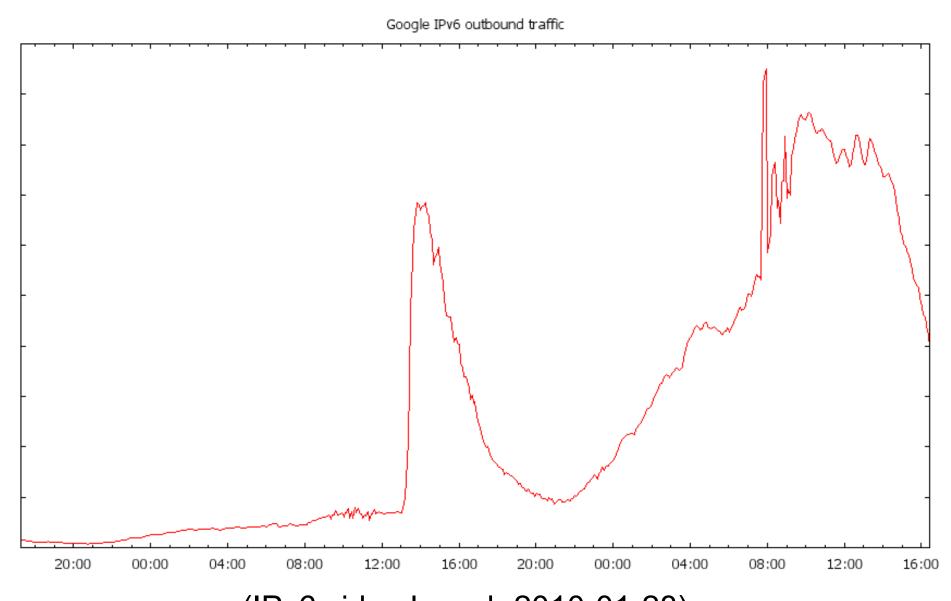
And all this with a small core team


Lorenzo Colitti May 2010

Statistics


Some statistics

35% connectivity growth in one year


Most native IPv6 users are in France

6to4 / teredo latency penalty > 50ms

Traffic can appear overnight

(IPv6 video launch 2010-01-28)

May 2010

Questions?

Lorenzo Colitti lorenzo@google.com