Rocky Mountain IPvé6 Task Force

Application Development

Outline of Presentation

* AsIPv6 is deployed, the application developers
and the administrators will face several problems.

* This presentation clarifies the problems occurring
in transition period between IPv4 applications
and IPv6 applications.

* The presents guidelines that help application
developers understand how to develop IP
version-independent applications during the
transition period.

What application developers can do

* |tisimportant for programmers to “think
IPv6”: To speed up IPv6 adoption

* Avoid risk of rolling out non compatible IPv6
programs once IPv6 will take place

Application Interoperability

X
~ 2%

ltllmummumnuunlllunnulunu|l||u|ul\unuunmmlllmim ml"'—— ""il ‘““ltﬂ""l WL T 'mﬂq “mm
‘EE %l PORTHG TO (8 “N‘W
! 1 'PVG .\ nllll"(l

ST J*!*ﬁ? oo ST .g \—'xr.- “

_.____.._

= “" l"llM\ ‘\‘\ \ “ = w“"‘l‘l""""“"""""'i' "'-]I!Iiilfu:llulul’l ﬁnmu u‘uumnmlmm\uu|| ; "‘"":)I{III\M[l' 'i.\llin{

Application Perspective
within the Transition Architecture

Applications Applications

End-point Network End-point
Node Routing/Addressing Node

Application Perspective within
a Dual Stack

Application Layer

TCP or UDP

1
IGMP, ICI\/:IPv4 icMbve
IPv4 |P\IIG
APR, RARP :

Underlying LAN or WAN technology

IPv4 Header ! IPv6 Header

Payload Payload

Application Transition Issues

Dual-stack vs. application versions

Operating System being dual stack does not mean having both IPv4 and
IPv6 applications.

DNS name resolution

A client application can not know the version of peer application by only
doing a DNS name lookup.

Application selection

Users may be confused by their various application versions (IPv4-only,
IPv6-only, IPv4/IPv6) because they don’t know the version of the peer
application by DNS query results.

Impact of IPv6 stack on Applications

Applications in a dual stack host prefer to use
IPv6 address instead of IPv4

In IPv6, it is normal to have multiple addresses
associated to an interface. In IPv4, no address is
associated to a network interface, while at least
one (link local address) is in IPv6.

The two protocols cannot communicate directly,
even in dual stack hosts. There are some different
methods to implement such communication, but
they are out of scope of this document.

Impact of DNS on applications in a
mixed IPv4/IPv6 world

* Applications should try all addresses (both v4 and
v6) they get from DNS if necessary. Applications
should use the getaddrinfo() resolver function
and try the addresses in the order it returns
them; often IPv6 first. Some applications fail to
failover to IPv4 when IPv6 fails

— May result in long timeouts. Might wait up to 30s per
address if no TCP/ICMP error

— Also some firewalls just discard DNS packets with
AAAA requests, resulting in long timeout,
ad.doubleclick.net is one problem

Returning multiple addresses

e getaddrinfo() can return multiple addresses,

* if a host have multiple address with multiple
address families, as below:

testhost IN A a.b.c.d
IN AAAA XOCXIXEXIXIXIX

IPv6 enabled client connecting to an
IPv4 server at dual stack node

XXX XEX 7 N s a.b.c.d ~N
a.b.c.d ~—
IPV6 IPv4
. > DNS
Client DNS request Server
~_
TCP/UDP
Connection Failed
IPv4 || IPv6

XOCXIXIXIX XX \ /

IPv6 enabled client connecting to an
IPv4 server at dual stack node

XOEXIEXIXIXIX

XOCKXDCKXEK 7 a.b.c.d
a.b.c.d ~— 4 N
IPv6e IPva
i > DNS
Cl'ey DNS request Serve
N~
TCP/UDP
IPva | 1Pv6
_ J

(m—

CASES
APPLICATION INTEROPERABILITY

(*) IPv6/IPVv4 clients connecting to an IPv4

TCP/UDP

¢ a.b.c.d

IPv4

server at IPv4-only node

IPv4 IPv4 IPv6 IPv6
Client Client Client Client

TCP/UDP

a.b.c.d
\ 4

TCP/UDP

IPv4 | IPv6

IPv6

a.b.c.d

IPv4
Server

TCP/UDP
a.b.c.d

IPv4

/ IPv4 <\

(*) IPv6/IPVv4 clients connecting to an IPv6
server at IPv6-only node

XOCXOCXIXIXX

IPv4 IPv4 IPv6 IPv6 IPv6
Client Client Client Client Server

TCP/UDP TCP/UDP TCP/UDP TCP/UDP TCP/UDP

X:XZ\E:X:X:X:X:X

IPv4 IPv4 | IPv6 IPv6 1Pva || 1Pv6 | IPv6

(®) IPv6/IPV4 clients connecting to an IPv4

TCP/UDP

¢ a.b.c.d

IPv4

server at dual stack node

IPv4 IPv4 IPv6 IPv6
Client Client Client Client

TCP/UDP
a.b.c.d

\ 4

TCP/UDP

IPv4 | IPv6

IPv6

a.b.c.d
XXX

IPv4
Server

TCP/UDP
a.b.c.d

IPv4 | IPv6

/ IPv4 <\

(*) IPv6/1PVv4 clients connecting to an IPv6
server at dual stack node

a.b.c.d
XEXXEXEXX X

IPv4 IPv4 IPv6 IPv6 IPv6
Client Client Client Client Server

TCP/UDP TCP/UDP TCP/UDP TCP/UDP TCP/UDP

XIXIXEXIXEX:X
o

¢ a.b.c.d a.b.c.d x:x:&:x:x:x:x:x

A4
IPv4 IPv4 | IPv6 IPv6

.b.c.

d
1Pva || 1Pv6 | IPv4 | IPv6

(IPv4 <\

J

(*)JPv6/IPVA4 clients connecting to an IPv4-
only & IPv6-only server at dual stack node

X

a.b.c.d

EXDCXIXIXIX

IPv4 IPv4 IPv6 IPv6 IPv4 IPv6
Client Client Client Client e B
A {k

TCP/UDP

¢ a.b.c.d

IPv4

TCP/UDP
a.b.c.d

\ 4

IPv4 | IPv6

TCP/UDP

X:XZ‘E:X:X:X:X:X

IPv6

TCP/UDP

.b.c.d

X:X:X:XZ*:X:X:X

IPv4 | IPv6

(IPv4 <\

J

Client server & network type
combinations

IPv4 Server IPv6 Server
Application Application
IPv4 Dual- IPv6 Dual-
Node Stack node Stack

*

)
|
-2
s)
<
>
Q
)
| e
.9
o
(o]

>
Q

Guideline Summary

* |n order to allow applications to communicate
with other IPv6 nodes, the first priority is to
convert the applications supporting both IPv4
and IPv6.

 The applications should do iterated jobs for
finding the working address out of addresses

returned by getaddrinfo().

* The applications will have to work properly in
IPv4-only nodes (whether IPv6 protocol is
completely disabled).

Application development

* The same binary should work on hosts that
support only one or both IP protocols

* Applications must be changed to use IPv6
socket APIs (RFC 3493 and RFC 3542)

Application issues

* |Pv6 addresses in URLs (RFC 2732)
— E.g. http://[2001:610:148:dead:210:18ff:fe02:38]:80/
— Not all applications support this

* IPv4 mapped IPv6 addresses

— Some operating systems allow applications to send/
receive IPv4 on IPv6 sockets

— An IPv4 address a.b.c.d is represented as ::ffff:a.b.c.d

— Some poorly written applications may require you to
write IPv6 ACLs for mapped addresses to limit IPv4

Programming Languages

Perl
— Special modules like Socket6 and 10::Socket::INET6

Python 2.3.4 and beyond works with IPv6

— However, Windows binaries at python.org does not
support it. 2.4 binaries will be built with IPv6 support

PHP
— Partial IPv6 support
— Many PHP scripts work with IPv6 with no change

Java

— SUN Java SDK 1.4 and beyond has IPv6 support

— Many Java applications work with IPv6 with no change due
to the higher level API

Application Interoperability

* For many years we will live in a dual IP
protocol version world.

 We will see progressive spread of IPv6
deployment and a very relevant residual usage
of IPv4 all over the world

* Ways for interoperating between two
incompatible protocols need to be identified

Network Transparent Programming

* For Network Transparent Programming it is
Important to pay attention to:

— Use of name instead of address in applications is
advisable; in fact, usually the hostname remains the
same, while the address may change more easily.

— From application point of view the name resolution is
a system independent process.

* Avoid the use of hardcoded
— numerical address and binary
— representation of addresses.

* Use getaddrinfo and getnameinfo functions.

ldentify code to change

* To rewrite an application with IPv6 compliant
code, the first step is to find all IPv4 dependent
functions.

* Asimple way is to check the source and header

file with UNIX grep utility or using the IPv6 code
scrubber. Example grep:

S grep sockaddr_in *c *.h

S grep in_addr *.c *.h

S grep inet_aton *.c *.h

S grep gethostbyname *.c *.h

Rewriting Applications

Developers should pay attention to hardcoded
numerical address, host names, and binary
representation of addresses.

It is recommended to put all network functions in a
single file.
It is also suggested to replace all gethostbyname with

the getaddrinfo function, a simple switch can be used
to implement protocol dependent part of the code.

Server applications must be developed to handle
multiple listen sockets, one per address family, using
the select call.

Traditional IPv4 coding

#define PORT 2000 /* This definition is a number */

void server ()

{

int Sock; /* Descriptor for the network socket */
struct sockaddr in SockAddr; /* Address of the server socket descr */

if ((Sock = socket SOCK_STREAM, 0)) < 0) {
error ("Server: cannot open sO

return; The code must be duplicated for

each address family

memset (& SockAddr, 0, sizeof (SockAddr
SockAddr.sin family = AF_ INET;

SockAddr.sin addr.s_addr= htonl (INADDR ANK); /* all local addresses */
SockAddr.sin port = htons (PORT) ;

/* Convert to network byte order */

if (bind(Sock, (struct sockaddr *) &SockAddr, sizeof (SockAddr)) < 0) {
error ("Server: bind failure");
return;

/* ... %/

With IPv6 — a new style

#define PORT "2000" /* This definition is a string */

void server ()

{

int Sock; /* Descriptor for the network socket */
struct addrinfo Hints, *AddrInfo; /* Helper structures */
Family-independent code
memset (&Hints, 0, sizeof (H in_
Hints.ai family /* or AF_INET / AF _INET6 */
Hints.ai_socktype = SUCK_STREAM;
Hints.ai flags = AI_ PASSIVE; /* ready to a bind() socket */

if (getaddrinfo (NULL /* all local addr */, PORT, Hints, Ad@= 0) {

annot resolve Addr / Port ")

Fills some internal structures with family-
independent data using literal / numeric host and
// Open a socket with the correct addres poOrt

if ((Sock=socket (AddrInfo->ai family, AddrInfo->ai_socktype, AddrInfo->ai protocol))<0) {
error ("Server: cannot open socket.");

return;
}
if (bind(So&k, AddrInfo->ai_addr, AddrInfo—>ai_addrleD) {
error ("Server: bin T,
return; .
} \ Data returned by getaddrinfo()
/* ... %/ is used in a family-independent

way

Adding IPv6 code to Old IPv4 Apps
(1/2)

 We need to locate the code that needs to be changed

— “string search” to locate the system calls related to the
socket interface
* This is simple
— “visual inspection” for other parts of the code
* This is not

e System calls related to the socket interface
— Convert part of the code to become protocol independent
* The most part of socket functions

— Add special code for IPv6

* Some functions (getsockopt (), setsockopt ()) which
behave differently in IPv4 and IPv6

Adding IPv6 code to Old IPv4 Apps

(2/2)
 Other code

— Custom control used as input for an IPv4 address
— Parsing or URLs

e Several allowed strings
— http://203.178.141.194
— http://www.kame.net
— http://2001:200:0:8002:203:47ff:fea5:3085

* The “:” symbol is a “port delimiter” in IPv4, while it is the
“address separator” in IPv6

— http://www.kame.net:80
— http://[2001:200:0:8002:203:47ff:fea5:3085]:80

— Application-layer protocol

* |Is this protocol defining a field that carries IPv4 addresses
(e.g. peer-to-peer applications)?

— Difficult to locate

Writing new apps with both IPv4 and
IPve Support

* For the most part, this is much easier than writing
IPv4-only applications with the older BSD
programming style
— recommended to use: getaddrinfo () and

getnameinfo ()

— Code is smaller and easier to understand than the one
written according to the old socket interface

 Some code may be duplicated
— getsockopt (), setsockopt()
— URL parsing

Dual-Stacked Nodes:
Sending IPv4 and IPv6 Packets

AF_INET AF_INET AF _INET6 AF_INET6
SOCK_STREAM SOCK_DGRAM SOCK_STREAM SOCK_DGRAM
tcp_output() udp_output() tcp6_output() _output()

ip_output() ip6_output()

To Link-Layer To Link-Layer

 AF_INET AF_INET

IPv4 sockets) SOCK_STREAM SOCK_DGRAM
sockaddr in sockaddr_in
>~ AF_INET6 AF_INET6
IPv6 SOCK_STREAM SOCK_DGRAM
sockets = sockaddr_in6 sockaddr_in6
= \J \J \J \4
A A
>
— IPv4 mapped
Address IPv4 IPv6
for connect)
or sendto (_
IPv4 IPV6
| \

IPv4 datagram IPv6 datagram

Current Status of IPv6 Support for
Networking Applications

 List of IPv6 Supported Networking Apps.

— http://www.deepspaceb.net/docs/
ipvb6 status page apps.html

* |Pv6 application and patch database
— http://ipv6.niif.hu/m/ipv6 apps db/

Multicast capable applications

Mbone tools, vic/rat etc
— IPv6 multicast conferencing applications
— http://www-mice.cs.ucl.ac.uk/multimedia/software/
VideolLAN
— Video streaming, also IPvé multicast. Server and client
— Many operating systems, both Windows and UNIX
— http://www.videolan.org/
DVTS http://www.sfc.wide.ad.jp/DVTS/
— Streaming DV over RTP over IPv4/IPv6

— DV devices using Firewire can be connected to two different machines and you
can stream video between them over the Internet

Mad flute
— Streaming of files using multicast (IPv4/IPve ASM/SSM)
— Linux and Windows (not totally sure about *BSD status)
— http://www.atm.tut.fi/mad/

Conclusions for Application

Development

e Effort required to add IPv6 support to and old
IPv4-only application is not negligible
— Far more than 50% of the lines of code need to be
changed
— Hidden costs (input forms, application-dependent
protocols, etc.)
* Creation of new IPv4 and IPv6 applications from
scratch
— The socket interface is simpler than before

— Some common issues:
e Fallback: for clients
e Dual-socket bind: for servers

References

 RFC 4038 on Application Aspects of IPv6
Transition

e RFC 3542 on Advanced Sockets API for IPv6

e RFC 3493 on Basic Socket Interface Extensions
for IPv6

Acknowledgements

] = F el i, ST T i, R LRETe R e SR
””"‘"u““l““““ "‘“““ ' '“U“ ““ L URLE ““l"‘“““"" “l““ ' ||Yr_-— o 'I U “u]““‘W"N“" ﬂ ”ll" u
ull! "m

PORTING To‘
Ll 6 ‘,,,

e e i S s

] u(“ \uw | umnwmuﬂ'"nmmumw"q wﬂlmmw“u""'“'u“""'" ' i
L ! ..imm T T

Jim Bound, Eva Castro, Pekka Savola
Thanks!

