··|···|·· CISCO

Enterprise IPv6 Deployment

Shannon McFarland CCIE# 5245 Corporate Consulting Engineer Office of the CTO

Reference Materials

- Deploying IPv6 in Campus Networks (Just updated): http://www.cisco.com/en/US/docs/solutions/Enterprise/Campus/Ca mpIPv6.html
- Deploying IPv6 in Branch Networks (Just updated): <u>http://www.cisco.com/en/US/solutions/ns340/ns414/ns742/ns816/l</u> <u>anding br ipv6.html</u>
- New/Updated IPv6 Cisco Sites: <u>http://www.cisco.com/go/ipv6 http://www.cisco.gom/go/entipv6</u>
- Cisco Network Designs: <u>http://www.cisco.com/go/designzone</u>
- Cisco Live Tweet Chat on Enterprise IPv6: <u>http://bit.ly/a8s2tW</u>
- Interop Las Vegas Enterprise IPv6 Session
- Twitter:@eyepv6

Recommended Reading

Deploying IPv6 in Broadband Networks - Adeel Ahmed, Salman Asadullah ISBN0470193387, John Wiley & Sons Publications[®]

Available Now-Hardcover/eBook

Shannon McFarland Muninder Sambi Nikhi Sharma Sanjay Hooda

Planning & Deployment Summary

Dramatic Increase in Enterprise Activity Why?

rnal sure	Growth/Protection	 When the IPv4 pool(s) run out – things keep working but the Internet stops growing Enterprise that is or will be expanding into new markets
Exte Pres	Partnership	 Enterprise that partners with other companies/organizations doing IPv6 Governments, enterprise partners, contractors
Internal Pressure	OS/Apps	 Microsoft Windows 7, Server 2008 Microsoft DirectAccess
	Fixing Old Problems	Mergers & AcquisitionsNAT Overlap
	New Technologies	 High Density Virtual Machine environments (Server virtualization, VDI) SmartGrid

IPv6 Integration Outline

Pre-Deployment	Deployment
Phases	Phases
 Establish the network	 Transport considerations
starting point	for integration
 Importance of a network assessment and available tools Build a pilot or lab apyirapment 	 Internet Edge (ISP, Apps) Campus IPv6 integration
 Build a pilot of lab environment Obtain addressing or use ULA or documentation prefix (in lab) Learn the basics (DNS, routing changes, address assignment) 	 Data Center integration options WAN IPv6 integration options Execute on gaps found in assessment

Cisco IPv6 Services

IPv6 Discovery Service

Guidance in the early stages of considering a transition to IPv6

IPv6 Assessment Service Determine how your network needs to change to support your IPv6 strategy

IPv6 Planning and Design Service Designs, transition strategy, and support to enable a smooth migration

IPv6 Implementation Service Validation testing and implementation consulting services

Network Optimization Service Absorb, manage, and scale IPv6 in your environment

A Phased-Plan Approach for Successful IPv6 Adoption

Slide 8

M1 Ideas: change & to 'and'

text and graphic clean up [vendor] Melissa, 1/12/2010

Address Considerations

Not Recommended

- Everything internal runs the ULA space
- A NAT supporting IPv6 or a proxy is required to access IPv6 hosts on the internet
- Is there a NAT66? draft-mrw-nat66-xx (Network Prefix Translation (NPTv6)
- Removes the advantages of not having a NAT (i.e. application interoperability, global multicast, end-to-end connectivity)

Not Recommended

- Both ULA and Global are used internally except for internal-only hosts
- Source Address Selection (SAS) is used to determine which address to use when communicating with other nodes internally or externally
- In theory, ULA talks to ULA and Global talks to Global—SAS 'should' work this out
- ULA-only and Global-only hosts can talk to one another internal to the network
- Define a filter/policy that ensures your ULA prefix does not 'leak' out onto the Internet and ensure that no traffic can come in or out that has a ULA prefix in the SA/DA fields
- Management NIGHTMARE for DHCP, DNS, routing, security, etc...

Recommended

- Global is used everywhere
- No issues with SAS
- No requirements to have NAT for ULA-to-Global translation—but, NAT may be used for other purposes
- Easier management of DHCP, DNS, security, etc.
- Your heartburn comes from the security team topology hiding

Link Level—Prefix Length Considerations

64 bits	> 64 bits	 /64 everywhere
 64 bits Recommended by RFC3177 and IAB/IESG Consistency makes 	 Address space conservation Special cases: /126—valid for p2p /127—valid for p2p if you are 	 /64 + /126 64 on host networks 126 on P2P
 MUST for SLAAC (MSFT DHCPv6 also) Significant address space loss 	 Careful (draft-konno-ipv6- prefixlen-p2p-xx/(RFC3627)) /128—loopback Must avoid overlap with specific addresses: Router Anycast (RFC3513) Embedded RP (RFC3956) ISATAP addresses 	 /64 + /127 64 on host networks 127 on P2P Always use /128 on loop

General Concepts

SLAAC & Stateful/Stateless DHCPv6

- StateLess Address AutoConfiguration (SLAAC) RAbased assignment (a MUST for Mac)
- Stateful and stateless DHCPv6 server

Cisco Network Registrar: http://www.cisco.com/en/US/products/sw/netmgtsw/ps1982/ Microsoft Windows Server 2008: http://technet2.microsoft.com/windowsserver2008/en/library/bab0f

<u>1a1-54aa-4cef-9164-139e8bcc44751033.mspx?mfr=true</u>

DHCPv6 Relay—supported on routers and switches

HSRP for IPv6

- Many similarities with HSRP for IPv4
- Changes occur in Neighbor Advertisement, Router Advertisement, and ICMPv6 redirects
- No need to configure GW on hosts (RAs are sent from HSRP active router)
- Virtual MAC derived from HSRP group number and virtual IPv6 linklocal address
- IPv6 Virtual MAC range: 0005.73A0.0000 - 0005.73A0.0FFF (4096 addresses)
- HSRP IPv6 UDP Port Number 2029 (IANA Assigned)

<pre>track 2 interface FastEthernet0/0 line-protocol</pre>			
interface FastEthernet0/1			
ipv6 address 2001:DB8:66:67::2/64			
standby version 2			
standby 2 ipv6 autoconfig			
standby 2 timers msec 250 msec 800			
standby 2 preempt			
standby 2 preempt delay minimum 180			
standby 2 authentication cisco			
standby 2 track 2 decrement 10			

Host with GW of Virtual IP

#route -A	inet6 grep ::/0 grep eth2				
::/0	fe80::5:73ff:fea0:1	UGDA	1024	0	0 eth2

IPv6 QoS Syntax Changes

Combined or separate QoS policies?

- IPv4 syntax has used "ip" following match/set statements
 Example: match ip dscp, set ip dscp
- Modification in QoS syntax to support IPv6 and IPv4

```
New <u>match</u> criteria
```

match dscp - Match DSCP in v4/v6

```
match precedence - Match Precedence in v4/v6
```

New set criteria

set dscp - Set DSCP in v4/v6

set precedence - Set Precedence in v4/v6

 Additional support for IPv6 does not always require new Command Line Interface (CLI)

Example—WRED

Start Here: Cisco IOS Software Release Specifics for IPv6 Features http://www.cisco.com/en/US/docs/ios/ipv6/configuration/guide/ip6-roadmap.html

IPv6 Co-existence Solutions

Dual Stack

Recommended Enterprise Co-existence strategy

Tunneling Services

Connect Islands of IPv6 or IPv4

Translation Services

Connect to the IPv6 community

Deploying IPv6 in Campus Networks: http://www.cisco.com/univercd/cc/td/doc/solution/campipv6.pdf

Campus IPv6 Deployment Options Dual-Stack IPv4/IPv6

- Dual Stack = Two protocols running at the same time (IPv4/IPv6)
- #1 requirement—switching/ routing platforms must support hardware based forwarding for IPv6
 - 3560/3750 +
 - 4500 Sup6E +
 - 6500 Sup32/720 +
- IPv6 is transparent on L2 switches but consider:
 - L2 multicast—MLD snooping
 - IPv6 management— Telnet/SSH/HTTP/SNMP
 - Intelligent IP services on WLAN
- Expect to run the same IGPs as with IPv4

IPv6/IPv4 Dual Stack Hosts

Distribution Layer: HSRP, EIGRP and DHCPv6-relay (Layer 2 Access)

ipv6 unicast-routing	interface Vlan4
!	description Data VLAN for Access
interface GigabitEthernet1/0/1	ipv6 address 2001:DB8:CAFE:4::2/64
description To 6k-core-right	<pre>ipv6 nd managed-config-flag</pre>
ipv6 address 2001:DB8:CAFE:1105::A001:1010/64	<pre>ipv6 dhcp relay destination 2001:DB8:CAFE:10::2</pre>
ipv6 eigrp 10	ipv6 eigrp 10
ipv6 hello-interval eigrp 10 1	standby version 2
ipv6 hold-time eigrp 10 3	standby 2 ipv6 autoconfig
ipv6 authentication mode eigrp 10 md5	standby 2 timers msec 250 msec 750
ipv6 authentication key-chain eigrp 10 eigrp	standby 2 priority 110
!	standby 2 preempt delay minimum 180
interface GigabitEthernet1/0/2	standby 2 authentication ese
description To 6k-core-left	!
ipv6 address 2001:DB8:CAFE:1106::A001:1010/64	ipv6 router eigrp 10
ipv6 eigrp 10	no shutdown
ipv6 hello-interval eigrp 10 1	router-id 10.122.10.10
ipv6 hold-time eigrp 10 3	passive-interface Vlan4
ipv6 authentication mode eigrp 10 md5	passive-interface Loopback0
ipv6 authentication key-chain eigrp 10 eigrp	

Access Layer Security

For Your Reference

ipv6 access-list HOST_PACL remark Deny Rogue DHCP deny udp any eq 547 any eq 546 remark Deny RA From Client deny icmp any any router-advertisement permit ipv6 any any !

interface GigabitEthernet1/0/6
ipv6 traffic-filter HOST_PACL in

interface GigabitEthernet1/0/6
ipv6 nd raguard

interface GigabitEthernet1/0/6
ipv6 nd router-preference High

http://www.cisco.com/en/US/docs/ios/ipv6/configuration/guide/ip6-first_hop_security.html

- L2/L3 Security
- Port ACL (PACL), RA Guard, SEND, etc...
- RA Preference "High"

Campus IPv6 Deployment Options IPv6 Service Block—Rapid Deployment/Pilot

- Provides ability to rapidly deploy IPv6 services without touching existing network
- Provides tight control of where IPv6 is deployed and where the traffic flows (maintain separation of groups/locations)
- Get lots of operational experience with limited impact to existing environment – Ideal for Pilot
- 1) Leverage existing ISP block for both IPv4 and IPv6 access
- 2) Use dedicated ISP connection just for IPv6—Can use IOS FW or PIX/ASA appliance

Primary ISATAP Tunnel Secondary ISATAP Tunnel

Data Center/Internet Edge

IPv6 Data Center Integration

- Route/Switch design will be similar to campus based on feature, platform and connectivity similarities – Nexus, 6500 4900M
- The single most overlooked and potentially complicated area of IPv6 deployment
- Stuff people don't think about:

NIC Teaming, iLO, DRAC, IP KVM, Clusters

Innocent looking Server OS upgrades – Windows Server 2008 - Impact on clusters – Microsoft Server 2008 Failover clusters full support IPv6 (and L3)

- Internet-facing Data Center
- Most of the internal and Internet DC considerations are the same

IPv6 in the Enterprise Data Center Biggest Challenges Today

- Application support for IPv6 Know what you don't know
 - If an application is protocol centric (IPv4):
 - Needs to be rewritten
 - Needs to be translated until it is replaced
 - Wait and pressure vendors to move to protocol agnostic framework
- Deployment of translation
 - NAT64 (Stateful for most enterprises)
 - Apache Reverse Proxy
 - Windows Port Proxy
 - 3rd party proxy solutions
- Network services above L3 (A short-term challenge)
 - SLB, SSL-Offload, application monitoring (probes)
 - Application Optimization
 - High-speed security inspection/perimeter protection

SLB + IPv6 / NAT64

NAT64

Two flavors – Stateless and Stateful

draft-ietf-behave-v6v4-xlate-xx (and others associated with that draft) draft-ietf-behave-v6v4-xlate-stateful-xx

Stateless – Not your friend in the enterprise (corner case deployment)

1:1 mapping between IPv6 and IPv4 addresses (i.e. 254 IPv6 hosts-to-254 IPv4 hosts)

Requires the IPv6-only hosts to use an "IPv4 translatable" address format

 Stateful – What we are after for translating IPv6-only hosts to IPv4-only host(s)

It is what it sounds like – keeps state between translated hosts Several deployment models (PAT/Overload, Dynamic 1:1, Static, etc...)

This is what you will use to translate from IPv6 hosts (internal or Internet) to IPv4-only servers (internal DC or Internet Edge)

Apache2 Reverse Proxy

Netstat - Client

TCP[2001:db8:beef:10::16]:54640[2001:db8:cafe:12::5]:80ESTABLISHEDTCP[2001:db8:beef:10::16]:54641[2001:db8:cafe:12::5]:80ESTABLISHED

ProxyPass / http://10.121.11.60:80/
ProxyPassReverse / http://10.121.11.60:80/

What if I Can't Dual Stack My Edge?

Internet Edge - to – ISP Boatloads of options

Deploying IPv6 in Branch Networks: http://www.cisco.com/univercd/cc/td/doc/solution/brchipv6.pdf

IPv6 Enabled Branch

Focus more on the provider and less on the gear

Dual-Stack IPSec VPN or MPLS (6PE/6VPE) Firewall (IPv4/IPv6) Switches (MLD-snooping)

Hybrid Branch Example

- Mixture of attributes from each profile
- An example to show configuration for different tiers
- Basic HA in critical roles is the goal

DMVPN with IPv6 Hub Configuration Example

crypto isakmp policy 1	interface Tunnel0
encr aes 256	description DMVPN Tunnel 1
authentication pre-share	ip address 10.126.1.1 255.255.255.0
	ipv6 address 2001:DB8:CAFE:20A::1/64
group 2	ipv6 mtu 1416
1	ipv6 eigrp 10
crvpto isakmp kev CISCO address 0.0.0.0 0.0.0.0	ipv6 hold-time eigrp 10 35
· · · · · · · · · · · · · · · · · · ·	no ipv6 next-hop-self eigrp 10
:	no ipv6 split-horizon eigrp 10
crypto ipsec transform-set HUB esp-aes 256 esp-sha-hmac	ipv6 nhrp authentication CISCO
!	ipv6 nhrp map multicast dynamic
crypto ipsec profile HUB	ipv6 nhrp network-id 10
	ipv6 nnrp noldtime 600
set transform-set HUB	ipvo nnrp redirect
	tunnel source Seriali/0
	tuppel key 10
	tunnel protection insec profile HUB
Primary DMVPN Tunnel 2001:DB8:CAFE:20A::/64	cumer protection ipsec profile nob
Backup DMVPN Tunnel (dashed	
2001:DB8:CAFE:20B::/64	
BR1-1 ::2	HE1
BR1-2 ····	

DMVPN with IPv6 Spoke Configuration Example

```
crypto isakmp policy 1
encr aes 256
authentication pre-share
group 2
!
crypto isakmp key CISCO address 0.0.0.0 0.0.0.0
!
crypto ipsec transform-set SPOKE esp-aes 256 esp-sha-hmac
!
crypto ipsec profile SPOKE interfac
set transform-set SPOKE descrip
```



```
2 255.255.255.0
```

For Your Reference

```
interface Tunnel0
description to HUB
ip address 10.126.1.2 255.255.255.0
ipv6 address 2001:DB8:CAFE:20A::2/64
ipv6 mtu 1416
ipv6 eigrp 10
ipv6 hold-time eigrp 10 35
no ipv6 next-hop-self eigrp 10
no ipv6 split-horizon eigrp 10
ipv6 nhrp authentication CISCO
ipv6 nhrp map 2001:DB8:CAFE:20A::1/64 172.16.1.1
ipv6 nhrp map multicast 172.16.1.1
ipv6 nhrp network-id 10
ipv6 nhrp holdtime 600
ipv6 nhrp nhs 2001:DB8:CAFE:20A::1
ipv6 nhrp shortcut
tunnel source Serial1/0
tunnel mode gre multipoint
tunnel key 10
tunnel protection ipsec profile SPOKE
```

ASA with IPv6


```
name 2001:db8:cafe:1003:: BR1-LAN description VLAN on EtherSwitch
name 2001:db8:cafe:1004:9db8:3df1:814c:d3bc Br1-v6-Server
!
interface GigabitEthernet0/0
 description TO WAN
 nameif outside
 security-level 0
ip address 10.124.1.4 255.255.255.0 standby 10.124.1.5
 ipv6 address 2001:db8:cafe:1000::4/64 standby 2001:db8:cafe:1000::5
interface GigabitEthernet0/1
description TO BRANCH LAN
 nameif inside
 security-level 100
 ip address 10.124.3.1 255.255.255.0 standby 10.124.3.2
ipv6 address 2001:db8:cafe:1002::1/64 standby 2001:db8:cafe:1002::2
ipv6 route inside BR1-LAN/64 2001:db8:cafe:1002::3
ipv6 route outside ::/0 fe80::5:73ff:fea0:2
ipv6 access-list v6-ALLOW permit icmp6 any any
ipv6 access-list v6-ALLOW permit tcp 2001:db8:cafe::/48 host Br1-v6-Server object-group RDP
failover
failover lan unit primary
failover lan interface FO GigabitEthernet0/2
failover link FO-LINK GigabitEthernet0/3
failover interface ip FO 2001:db8:cafe:bad::1/64 standby 2001:db8:cafe:bad::2
failover interface ip FO-LINK 2001:db8:cafe:bad1::1/64 standby 2001:db8:cafe:bad1::2
access-group v6-ALLOW in interface outside
```

Branch LAN Connecting Hosts

```
ipv6 dhcp pool DATA W7
 dns-server 2001:DB8:CAFE:102::8
 domain-name cisco.com
I
interface GigabitEthernet0/0
 description to BR1-LAN-SW
no ip address
 duplex auto
 speed auto
interface GigabitEthernet0/0.104
 description VLAN-PC
 encapsulation dot10 104
 ip address 10.124.104.1 255.255.255.0
 ipv6 address 2001:DB8:CAFE:1004::1/64
 ipv6 nd other-config-flag
 ipv6 dhcp server DATA W7
 ipv6 eigrp 10
interface GigabitEthernet0/0.105
 description VLAN-PHONE
 encapsulation dot10 105
 ip address 10.124.105.1 255.255.255.0
 ipv6 address 2001:DB8:CAFE:1005::1/64
 ipv6 nd prefix 2001:DB8:CAFE:1005::/64 0 0 no-autoconfig
 ipv6 nd managed-config-flag
 ipv6 dhcp relay destination 2001:DB8:CAFE:102::9
 ipv6 eigrp 10
```


Remote Access

AnyConnect—SSL VPN

Provider Considerations

Port-to-Port Access

Multi-Homing

PI/PA Policy * Concerns	 PA is no good for customers with multiple providers or change them at any pace PI is new, constantly changing expectations and no "guarantee" an SP won't do something stupid like not route PI space Customers fear that RIR will review existing IPv4 space and want it back if they get IPv6 PI
NAT	 Religious debate about the security exposure – not a multi-homing issue If customer uses NAT like they do today to prevent address/policy exposure, where do they get the technology from – no scalable IPv6 NAT exists today
Routing	 Is it really different from what we do today with IPv4? Is this policy stuff? Guidance on prefixes per peering point, per theater, per ISP, ingress/egress rules, etc – this is largely missing today

Content

Hosted/Cloud Apps today	 IPv6 provisioning and access to hosted or cloud-based services today (existing agreements) Salesforce.com, Microsoft BPOS (Business Productivity Online Services), Amazon, Google Apps
Move to	 Movement from internal-only DC services to
Hosted/Cloud	hosted/cloud-based DC Provisioning, data/network migration services, DR/HA
Contract/Managed	 Third-party marketing, business development,
Marketing/Portals	outsourcing Existing contracts – connect over IPv6

Provisioning

Conclusion

- "Dual stack where you can Tunnel where you must Translate when you have a gun to your head"
- Create a virtual team of IT representatives from every area of IT to ensure coverage for OS, Apps, Network and Operations/Management
- Now is your time to build a network your way don't carry the IPv4 mindset forward with IPv6 unless it makes sense
- Deploy it at least in a lab IPv6 won't bite
- "If you don't like change, you're going to like irrelevance even less."
 - Gen. Shinseki, Chief of Staff, U.S. Army