Early experiences with IPv6-only WiFi

Kumar Reddy (@kumarreddy)
Director Technical Marketing Engineering
Cisco Systems

Based on the work of: Andrew Yourtchenko (@ayourtch), Patrick Warichet, Alok Wadhwa, Mayur Brahmandkar, Gunter Van de Velde, Mitko Vasilev and Cisco IT
Informal experiments with IPv6-only Wi-Fi

TL;DR version

• Scope
 Series of experiments inside Cisco and at Public Conferences (e.g. Cisco Live) with IPv6-only Wi-Fi

• Network
 Core network dual-stacked
 Access to ‘legacy’ Internet through a NAT64
 Tried both dedicated and shared Access Points with a “try me” IPv6 SSID

• Logistics
 Volunteer based support – Red T-shirts offered as incentive
 Each event was contained within a (very large) conference room, floor or campus building
 Email alias and wiki for support and report issues, findings – limited publicity
 Kept list of applications that worked/didn’t work (user-reported)
 Kept traffic statistics

• Results
 Things went from strange to better
How did we get into this?

Volunteer to help with network access at some public events

CHRONOLOGY

1. IPv6-only (trials)

2. IPv6-only (production)

CLEU 2012

WIPv6C 2012

CLUS 2012

CLEU 2013

WIPv6C 2013

Legend

WIPv6C : World IPv6 Congress
CLEU : Cisco Live EU
α : Cisco Alpha Network
CLUS: Cisco Live US
Numbers denote events featured in this presentation
Blue : Public event
Grey : Internal
Background on these events

- Series of world wide Cisco events
- Mix of technical education and product show case
- Over 17,000 attendees expected in US in 2013
- Network connectivity for attendees, booths, on-site services (registration ...), conference traffic (video), NOC

- IPv6 focused event in Paris
- Targeted ~500 attendees in 2013
- Co-located with World MPLS Congress and SDN congress
- Network connectivity for attendees, booths, on-site services (registration ...), conference traffic (video), NOC
1. Cisco α Network

A private, small-scale BYOD experiment

- **Goals**

 Saw some “surprises” on a public dual-stack network, wanted to investigate internally

 Discovered clients aggressively creating new temporary IPv6 address - used temporary

 Workaround : set short first-hop lifetimes for binding table

 Most surprises were related to RF environment

 Wanted to investigate client/network/behavior off-line

 Also decided to try IPv6-only Wi-Fi to test application behavior

- Deploy IPv6-only SSID during Cisco systems engineer training events and engineering plug-fests
Cisco Alpha Network Findings

- Network and client issues
 - **Different OS policies generate new privacy addresses at different times**
 - DHCPv6 not supported on some OS [versions]
 - Some mobile OS’ don’t support IPv6-only at all – at best workaround with IPv4 + ACL
 - Network devices still need IPv4 too
 - **Happy Eyeballs implementation varies across platforms/browsers**
 - Subtle First Hop/RA timer interactions
 - Certain devices have a high sensitivity to SSID switching (with dual stack too)
 - **Very few mobile clients support IPv6 on radio interfaces**

- Our network setup
 - **An old IPv4 multicast filter impacted [tunneled] RA distribution 🙁**
 - An over-engineered network had too many switches sending RAs: some reached clients, some didn’t
 - Our DNS server address is not easy to remember (next time use eg. 2001:DB8::53)

- User Experience
 - **Many users couldn’t tell if they were using IPv6 or not**
 - Test-ipv6.com, IPvFOO, IPv6 toolkit app etc are very useful – thank you!
 - Different device configurations (IT-installed, self-installed) meant different out of the box behavior (e.g. IPv6 on/off)
 - Poor user experience == frequent disconnects and long wait to associate (IPv4 multicast issue)
 - Recorded 160 applications tried by users (at internal events)
 - **Generally collaboration applications broke through NAT64**

Repeating “Turn It On” events at local sales offices through 2013
2. Cisco Live US 2012

A discreet public BYOD experiment

- The event network was fully dual-stacked
- Again volunteer-staffed, decided to try a larger experiment
- Semi-private IPv6-only Wi-Fi
 - IPv6 servers go native, IPv4 servers go through NAT64 and DNS64, using SLAAC + stateless DHCP
 - Rest of network is dual-stacked
 - SSID: ciscov6, password: ciscolive2012
 - SSID is not broadcasted (you have to type it in), not available everywhere
 - Special hack to enable certain devices to function
 - Giving all devices 100.64.0.0/16 address
 - IPv4 traffic is blocked
 - Happy Eyeballs and IPv6 preference provides IPv6-only-like service
- Also had IPv6-only Wi-Fi in the “World of Solutions” demo area
- Network settings – first hop timer setting
 - Access devices care about IP/MAC bindings – for forwarding and to avoid various forms of spoofing attacks
 - First hop binding tables have limited space
 - First hop binding entries are flushed periodically to make sure there are free entries for new clients or addresses, which creates sensitivity to client prefix lifetimes with SLAAC
 - **Short timers are good if there is client volatility on SSID; long timers are good to reduce ND chatter, allow for long device sleep** …
 - Experimental value for conference environment ~ 30 minutes. => 30 minutes prefix lifetime …
Cisco Live US 2012 findings

- **Client issues**
 - Need special hack for some devices to work, hence IPv4 on the IPv6 network
 - Some devices couldn’t reach DNS64 server
 - Intermittent cases of IPv4 preferred over IPv6 at demo station – maybe due to crowded RF or maybe because of client/browser AF selection
 - Some problems seen at previous events fixed in new versions of software, but also saw new problems on IPv6-only network
 - Saw a disparity of client software versions (expected), so some “fixed problems” were still out there

- **Network design issues**
 - Address allocation conundrum – SLAAC is easy, but requires timer tuning. DHCPv6 avoids a lot of the tuning exercises, but not supported on all platforms
 - Choice of first hop timers means clients shouldn’t switch/flap SSIDs quickly and repeatedly
 - **FHS binding table management logic changes to accommodate clients’ behavior**

- Changed First Hop default settings in WLC code

- To know more
3. World IPv6 Congress 2013

Officially supported, BYOD IPv6-only WiFi

• Event featured 3 SSIDs: Open dual-stack, Open demo (NAT64), WPK2 IPv6 only

• Used an “IPv5 Cookbook”
 Allocate IPv4 & drop any IPv4 traffic at first L3 hop
 Used DHCPv6
 Use WLC 7.3 (on Cisco Wireless LAN Controllers)

Enable first hop security, default timers work
 Run IPv6 multicast over multicast CAPWAP (multicast-multicast mode)
 Enable multicast suppression on the IPv4 network to limit excess multicast solicited RAs
 Use v4/v6 ACLs to drop Bonjour traffic
 Use NAT64 to reach “legacy Internet”

• Progress with some major client OS’ but inconsistent behaviors persist
 Cache time-outs for privacy addresses can result in device trying to use a privacy address after sleep
 that is blocked by the first hop
 Certain devices/applications use IPv4-only reachability tests

• Decreed the experiment a success

• Next year, IPv4 access will only be provided on request
What we learned

• Before IPv6 turn on
 A fair amount of selling is still required to overcome fear of the unknown
 Knowledge of IPv6 outside core group(s)/enthusiasts can be superficial

• Support
 No shortage of volunteers (T-shirt effect?) and lots of enthusiasm but actual
 support provided by small groups of usual suspects
 Real debug/troubleshooting skills are poorly distributed

• Dual stack
 Worked well

• IPv6-only works, but …
 See subtle network / client interactions
 And not so subtle stack differences
 And unsubtle end-point behavioral differences
 Also uncover old design “short-cuts”
 And need design changes e.g. security and management planes

• There are things to fix
Some Measurements
IPv6 Statistics @ Cisco Live US 2012

Measure: Unique MACs with IPv6 LL address
IPv6 global address
IPv6 with global EUI address
IPv4 global address

Measurements de-duplicate privacy addresses

In 6 months *:
Dual stack-capable devices increased from 47.5% to 77.5%
IPv6-using devices increased by 87.3%

* Between IPv6 World Congress, Jan 2012
And Cisco Live US: June 2012
Dual stack capable : IPv4 global + IPv6 LL
IPv6 using : IPv6 global

Data from dual-stack production network
World IPv6 Congress

Client stats: 2012 vs 2013

Max clients: 586 → 875

Using IPv6: 232 → 584

IPv4-only: 317 → 246

Number of clients using IPv6 39% → 66%
IPv4 / IPv6 Traffic stats 2012 vs 2013

IPv4: 6.15Mb → 6.76Mb = 109% of 2012
IPv6: 792Kb → 1020Kb = 129% of 2012
World IPv6 Congress 2013

High-level results from our “almost IPv6-only” experiment

- 96 hosts: with IPv4 address (baseline total clients on network)
- 85 hosts: have IPv6 link-local address
- 60 hosts: have global IPv6 address
- 11 hosts: no IPv6?
- 25 hosts: blocked??
Summary