IPv6 Support in Home Gateways

Chris Donley
c.donley@cablelabs.com
 Agenda

- Introduction
- Basic Home Gateway Architecture
- DOCSIS® Support for IPv6
- CableLabs eRouter Specification
- IETF IPv6 CPE Router
- IPv6 Transition Technologies
- Ongoing Initiatives
Introduction

• Service Providers are beginning to offer IPv6 service
• Home Gateways are instrumental in determining IPv6 service characteristics
• CableLabs and the IETF have developed compatible specifications for IPv6 Home Gateways
• During the transition to IPv6, co-existence with IPv4 is required
 » Many clients will not be upgradable to IPv6
 » A significant amount of content will remain accessible only through IPv4
• As we approach IPv4 exhaustion, new transition technologies such as NAT444, Dual-Stack Lite, and 6RD will be important for such gateways.
Basic Home Gateway Architecture

- Basic IPv6 Home Gateways are envisioned as extensions of existing IPv4 gateways
 - One or two customer-facing interfaces
 - One physical service provider-facing interface
- Gateways assign addresses to CPE devices
 - Stateless Address Autoconfiguration (SLAAC, RFC 4862)
 - Stateful DHCPv6 (RFC 3315)
- Gateways provide some level of security to home networks
Home Gateway Architecture

Diagram showing the connection between the Home Network, Home Gateway, ISP Network, and Internet.
DOCSIS® Support for IPv6

- DOCSIS specifications define a broadband data network over hybrid fiber coax plant
 - Cable Modems (CMs) are bridges
 - Cable Modem Termination Systems (CMTSs) include routers
- DOCSIS 3.0 added IPv6 support in 2006
 - CM can provision in IPv4, IPv6, or Dual-Stack mode
 - CMs use stateful DHCPv6 to acquire an IPv6 address
 - Stateless Address Autoconfiguration not supported
 - CPEs attached to a Cable Modem must use DHCPv6 to acquire an address
 - CPEs require a Home Gateway to use SLAAC
 - CMs and CMTSs forward IPv4/IPv6 subscriber traffic
- IPv6 support has also been added for DOCSIS 2.0 CMs
CableLabs eRouter Specification

- CableLabs developed eRouter in 2006 to define a lightweight IPv4/IPv6 Home Gateway
 - eRouter combines a CM with a CPE router
- WAN-side configuration
 - stateful DHCPv6
 - requests DNS servers
 - requests Prefix Delegation for LAN interfaces
- LAN-side configuration
 - Prefix obtained via DHCPv6 advertised in RA
 - Supports Stateless Address Autoconfiguration (SLAAC) or stateful DHCPv6 for CPE provisioning
 - DNS information shared via DHCPv6 or RFC 5006 Recursive DNS Server option in the RA
- Multicast Proxy
 - Provides support for music/video streaming services
IETF IPv6 CPE Router

- CableLabs and MSOs are working with Cisco and Broadband Forum to define IETF IPv6 Home Gateway requirements
 - Currently an IETF Internet Draft
- IPv6 CPE Router draft based in part on eRouter
 - Supports stateful DHCPv6 on the WAN
 - Supports SLAAC or DHCPv6 on the LAN
- Includes use cases to support Broadband Forum
 - IPv6 over PPP
 - SLAAC address acquisition on the WAN interface
- Requires “simple security” (packet filtering)
- Draft cleared Working Group Last Call, an important step on its way to becoming an RFC
IPv6 Transition

• IPv4 address space is nearly exhausted
• During the transition to IPv6, IPv4 will not be immediately retired
 » Many clients will not be upgradable to IPv6 and will take several years to be replaced
 » A significant amount of content will remain accessible only through IPv4
• Implications for Service Providers
 » Operators will need to continue to provide IPv4 Internet access beyond the IPv4 address exhaustion date
 – Dual-stack clients will need access to IPv4 content
 – IPv4 only clients will need IPv4 connectivity
Transition Technologies

• Transition originally planned as a gradual evolution
• Three older technologies are key building blocks
 » Dual-Stack
 – Run IPv6 and IPv4 simultaneously
 » Tunnels
 – Encapsulate one protocol inside the other
 » Translation
 – Convert one protocol into the other using NAT
• Next generation transition technologies are being developed to deal with IPv4 exhaustion
 » Evolving methods build upon or combine traditional ones to support both protocols
Emerging Technologies for Gateways

- **NAT444 (“Double NAT”)**
 - IPv4-only NAT
 - Performed at Home Gateway and at a Carrier Grade NAT (CGN) in ISP network

- **Dual-Stack Lite**
 - Combines dual stack, tunneling, and NAT
 - IPv4 traffic tunneled inside IPv6 from the dual-stack Home Gateway to the CGN
 - CGN uses NAT to multiplex multiple subscribers behind a single IPv4 address
 - Allows service providers to leverage IPv6 in the network without requiring a unique IPv4 addresses per subscriber

- **IPv6 Rapid Deployment (6RD)**
 - Updated 6to4 tunnel encapsulates IPv6 inside IPv4 from the dual-stack Home Gateway to a specific service provider router
 - Allows for rapid deployment of IPv6 when a service provider has not upgraded its access network
 - Offers service providers additional control over the IPv6 tunnel
Ongoing Initiatives

- **CableLabs and the IETF have defined compatible Home Gateway specifications**
 - New gateways that support IPv6 offer similar features and services as existing IPv4-only gateways
 - CableLabs, MSOs, and vendors tested compliant devices in an April interoperability event

- **Continued specification development will add support for transition technologies**
 - NAT 444 shares an IPv4 address with multiple devices
 - Dual-Stack Lite tunnels IPv4 across an IPv6 network
 - 6RD tunnels IPv6 across an IPv4 network when Service Provider upgrades are not feasible